Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor and insulin pump results in better blood-sugar control in all age groups with diabetes

01.07.2010
Adding a continuous blood sugar level sensor to an insulin pump helps patients with type 1 diabetes achieve better blood sugar control compared to the common standard of care, multiple daily insulin injections, concludes a study published on-line today in the New England Journal of Medicine.

The paper is entitled, Effectiveness of Sensor-Augmented Insulin-Pump therapy in Type 1 Diabetes.

"Combining the best technologies for insulin delivery and blood sugar monitoring really pays off for diabetes control," says Dr. Bruce Perkins, one of the co-authors of the study, endocrinologist at Toronto General Hospital and Assistant Professor at the University of Toronto. "Being aware of continuous blood sugar trends and having the tools to do something about them can help committed patients of all ages self-manage their diabetes very well."

Research conducted at 30 centres across North America, including Toronto General Hospital, found a significant decrease in average blood sugar levels (or A1c levels, which measure the average blood sugar levels over the past two or three months) from a baseline of 8.3% to 7.5% in the group using sensors and insulin pumps, compared to 8.3% to 8.1% in the multiple daily injection group, at one year. The decrease in A1c levels in both adults and children occurred without an increase in the rate of severe hypoglycemia, or low blood sugar, a common problem among patients who are trying to achieve better control of their blood sugar. Symptoms include shakiness, rapid heart beat, confusion and even unconsciousness.

Moreover, the proportion of participants who reached the A1c target of 7% or less was greater in the pump-therapy group than in the injection-therapy group. Adults with diabetes try and maintain A1c levels of seven percent or below in order to reduce the risk of complications from diabetes, such as kidney failure, heart disease and blindness.

The 485 study participants with inadequately controlled type 1 diabetes ranged in ages from seven to 70, and were treated for at least one year, in a randomized, controlled trial.

In the study, patients in the sensor-augmented pump therapy arm used an integrated system which incorporates an insulin pump, continuous glucose monitor and self-management software. A glucose (sugar) sensor reveals fluctuations in glucose levels in real-time, and transmits electric signals wirelessly to the insulin pump, which is about the size and shape of a small cell phone. The pump displays the blood sugar levels, allowing patients to react to either high or low levels before they become dangerous.

The study was sponsored by Medtronic, Inc.; and supported by Novo Nordisk; Lifescan; Bayer Heathcare; and Becton Dickinson.

Diabetes Facts:

More than 2.4 million Canadians have some form of diabetes.
Over 240,000 Canadians live with type 1 diabetes.
Canada has the sixth highest incidence rate of type 1 diabetes in children 14 years or younger in the world.
The incidence rate of type 1 diabetes is rising by three to five per cent in Canada; the greatest rise occurs in five to nine year olds.
The cause of type 1 diabetes remains unknown. People are usually diagnosed with type 1 diabetes before the age of 30, most often during childhood or their teens.
Over time, high blood glucose levels can cause complications such as blindness, heart disease, kidney problems, nerve damage and erectile dysfunction.
Insulin therapy is the cornerstone of treatment for type 1 diabetes. There are a variety of insulins to help manage type 1 diabetes. Insulin can be administered by syringe, pen or pump.
By 2010, it is estimated that diabetes will cost the Canadian healthcare system $15.6 billion a year, and that number will rise to $19.2 billion by 2020.

A person with diabetes can be faced with medication and supply costs up to $15,000 a year.

About Toronto General Hospital, University Health Network

Toronto General Hospital is a partner in the University Health Network, along with the Toronto Western Hospital and the Princess Margaret Hospital. These research hospitals are affiliated with the University of Toronto. The scope of research at Toronto General Hospital has made this institution a national and international resource for education and patient care, and a leader in diabetes, transplantation, cardiology, surgical innovation, infectious diseases and genomic medicine.

The Toronto General Research Institute has more than 350 scientists, students and support staff, more than $65 million in external funding, and its staff publish in more than 600 publications a year.

For media interviews, please contact:
Alex Radkewycz
TGH Public Affairs
Tel: 416 – 340 – 3895
Day Pager: 416 – 719 – 4578
alexandra.radkewycz@uhn.on.ca
Kate Richards
TGH Public Affairs
Tel: 416 – 340 – 4800, ext. 6309
kate.richards@uhn.on.ca

Alex Radkewycz | EurekAlert!
Further information:
http://www.uhn.on.ca

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>