Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sedation before nerve block increases risk, not pain relief

13.02.2014
New research suggests that sedating patients before a nerve block needed to diagnose or treat chronic pain increases costs, risks and unnecessary surgeries, and sedation does nothing to increase patient satisfaction or long-term pain control.

"Sedation doesn't help, but it does add expense and risk," says study leader Steven P. Cohen, M.D., a professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine. "In some places, every patient is being sedated. Our research shows it should be used very sparingly."

Nerve blocks, performed by injecting anesthetics and/or steroids into any number of areas of the body, from the spinal column to the hip joint, are often performed ahead of surgery and in addition to other invasive procedures, such as the ablation of nerves to treat arthritis in the back, to more accurately pin down the source of pain. If the nerve block fails to numb pain, surgery or the nerve ablation may not help. Increasingly, physicians have used light or even deep sedation in a bid to ease anxiety and pain while the injection is given.

However, results of the new study, reported online Feb. 13 in the journal Pain Medicine, show that sedation before a nerve block significantly increases false-positive results, which means patients are more likely to be sent in for surgeries and other procedures that won't cure the underlying pain. Another worry, Cohen says, is the health risk when someone is sedated.

Cohen and researchers from several other medical centers in the United States recruited 73 patients with back or limb pain who were scheduled to receive multiple nerve blocks. Roughly half of the group received the first injection with sedation and the second without. The remaining patients received their injections in the opposite order. Patients were given six-hour pain diaries, a routine step that helps patients determine whether the injections bring relief, and were asked to rate their satisfaction with the treatment. They were also seen a month later and asked to rate their pain and function after the treatment.

Although the sedated patients reported less pain immediately after the nerve block injection, on every other measure — from 30-day pain assessments to overall patient satisfaction — the results were the same whether or not they were sedated.

"A lot of cost for very little benefit," Cohen says.

The increase in false-positive results — the belief that the pain has been relieved when it has not been — can result from many factors, Cohen says. The medication used for the sedation itself can have pain-relieving properties. The sedative can relax muscles. Patients may need to take extra time away from daily activities after being under anesthesia, and that rest alone could make the patient feel better.

But if patients believe that the nerve block eased their underlying pain, the physician will often conclude he or she has found the source and will move ahead with the appropriate treatment, which may include spinal fusion or radiofrequency ablation of nerves for arthritis, Cohen says. In the end, he says, many patients end up back at square one — still in pain, but having suffered through a potentially unnecessary operation.

Cohen says that while many physicians may use sedation in a sincere effort to make the procedure less traumatic for patients, there is also a perverse financial incentive to use it.

"Unfortunately, medicine in many places has become a business. The fact is, you get paid more money to do the procedure with sedation," he says. "The costs of anesthesia can be more than the fee for the procedure itself. And patients are getting harmed."

The research was funded by the Center for Rehabilitation Sciences Research, part of the Uniformed Services University of the Health Sciences in Bethesda, Md.

Haroon Hameed, M.D., and Michael E. Erdek, M.D., both of Johns Hopkins, contributed to this study, as well as researchers from Walter Reed National Military Medical Center in Bethesda; the Uniformed Services University of the Health Sciences; the Mayo Clinic in Scottsdale, Ariz.; the Cleveland Clinic in Ohio; and the University of Florida in Gainesville.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report.

Media Contacts:
Stephanie Desmon; 410-955-8665; sdesmon1@jhmi.edu
Lauren Nelson; 410-955-8725; lnelso35@jhmi.edu

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>