Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sedation before nerve block increases risk, not pain relief

13.02.2014
New research suggests that sedating patients before a nerve block needed to diagnose or treat chronic pain increases costs, risks and unnecessary surgeries, and sedation does nothing to increase patient satisfaction or long-term pain control.

"Sedation doesn't help, but it does add expense and risk," says study leader Steven P. Cohen, M.D., a professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine. "In some places, every patient is being sedated. Our research shows it should be used very sparingly."

Nerve blocks, performed by injecting anesthetics and/or steroids into any number of areas of the body, from the spinal column to the hip joint, are often performed ahead of surgery and in addition to other invasive procedures, such as the ablation of nerves to treat arthritis in the back, to more accurately pin down the source of pain. If the nerve block fails to numb pain, surgery or the nerve ablation may not help. Increasingly, physicians have used light or even deep sedation in a bid to ease anxiety and pain while the injection is given.

However, results of the new study, reported online Feb. 13 in the journal Pain Medicine, show that sedation before a nerve block significantly increases false-positive results, which means patients are more likely to be sent in for surgeries and other procedures that won't cure the underlying pain. Another worry, Cohen says, is the health risk when someone is sedated.

Cohen and researchers from several other medical centers in the United States recruited 73 patients with back or limb pain who were scheduled to receive multiple nerve blocks. Roughly half of the group received the first injection with sedation and the second without. The remaining patients received their injections in the opposite order. Patients were given six-hour pain diaries, a routine step that helps patients determine whether the injections bring relief, and were asked to rate their satisfaction with the treatment. They were also seen a month later and asked to rate their pain and function after the treatment.

Although the sedated patients reported less pain immediately after the nerve block injection, on every other measure — from 30-day pain assessments to overall patient satisfaction — the results were the same whether or not they were sedated.

"A lot of cost for very little benefit," Cohen says.

The increase in false-positive results — the belief that the pain has been relieved when it has not been — can result from many factors, Cohen says. The medication used for the sedation itself can have pain-relieving properties. The sedative can relax muscles. Patients may need to take extra time away from daily activities after being under anesthesia, and that rest alone could make the patient feel better.

But if patients believe that the nerve block eased their underlying pain, the physician will often conclude he or she has found the source and will move ahead with the appropriate treatment, which may include spinal fusion or radiofrequency ablation of nerves for arthritis, Cohen says. In the end, he says, many patients end up back at square one — still in pain, but having suffered through a potentially unnecessary operation.

Cohen says that while many physicians may use sedation in a sincere effort to make the procedure less traumatic for patients, there is also a perverse financial incentive to use it.

"Unfortunately, medicine in many places has become a business. The fact is, you get paid more money to do the procedure with sedation," he says. "The costs of anesthesia can be more than the fee for the procedure itself. And patients are getting harmed."

The research was funded by the Center for Rehabilitation Sciences Research, part of the Uniformed Services University of the Health Sciences in Bethesda, Md.

Haroon Hameed, M.D., and Michael E. Erdek, M.D., both of Johns Hopkins, contributed to this study, as well as researchers from Walter Reed National Military Medical Center in Bethesda; the Uniformed Services University of the Health Sciences; the Mayo Clinic in Scottsdale, Ariz.; the Cleveland Clinic in Ohio; and the University of Florida in Gainesville.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report.

Media Contacts:
Stephanie Desmon; 410-955-8665; sdesmon1@jhmi.edu
Lauren Nelson; 410-955-8725; lnelso35@jhmi.edu

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>