Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The search for an early biomarker to fight atherosclerosis

Study at the Montreal Heart Institute

It's on Saturday that the Journal of the American Heart Association published the conclusive results from a study directed by Dr. Éric Thorin of the Montreal Heart Institute (MHI), which suggests for the first time that a blood protein contributes to the early development of atherosclerosis.

Dr. Thorin, his team and his collaborators discovered that the blood levels of angiopoietin-like protein 2 (angptl2) are six times higher in subjects with coronary heart disease than in healthy subjects of the same age. Their basic research study also revealed that angptl2, which is undetectable in young mice, increases with age in healthy subjects and increases prematurely in subjects who have high cholesterol and pre-atherosclerotic lesions.

Entitled "Angiopoietin-like 2 promotes atherogenesis in mice," this study was conducted using an animal model consisting of three to twelve-month-old mice.

These results represent a major advance in the prevention and treatment of atherosclerosis. "Although much work remains to be done to broaden our knowledge of this protein's mechanisms of action, angiopoietin-like protein 2 may represent an early biomarker not only to prevent vascular damage but also to predict atherosclerotic disease," explained Dr. Thorin.

For 15 years, Dr. Thorin, a researcher at the MHI Research Centre and full professor at Université de Montréal, has been interested in the evolution of artery function during the aging process and in the underlying mechanisms of atherosclerosis. More specifically over the past five years, he has looked at the role of this particular protein. Thanks to his work, we now know that angptl2 causes a high degree of vascular inflammation. Blood levels of this protein increase in patients with cardiovascular disease as well as in people with complications related to diabetes, obesity and cancer in which the small blood vessels are damaged, as all of these diseases are associated with chronic inflammation.

According to Dr. Anil Nigam, a cardiologist and specialist in cardiovascular disease prevention at the MHI and co-author of the study, "Prevention is the ideal solution to delay the onset of atherosclerosis, and an early blood marker such as angptl2—if future clinical studies confirm this finding—will serve as an important tool to identify at-risk subjects who do not present with any symptoms of atherosclerotic disease."

About atherosclerosis

Atherosclerosis, a condition in which lesions obstruct blood flow in the arteries, is the cause of severe diseases such as heart attack and stroke. Atherosclerosis is a chronic inflammatory disease that slowly progresses as people age and that is accelerated in particular by high blood cholesterol and other risk factors, such as high blood pressure, high blood sugar, a sedentary lifestyle or psychological stress.

About the Montreal Heart Institute:

Marie-Josée Nantel
Communications Officer
Montreal Heart Institute
Phone: 514-376-3330, extension 2641

Marie-Josée Nantel | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>