Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seafood substitutions can expose consumers to unexpectedly high mercury

20.08.2014

New measurements from fish purchased at retail seafood counters in 10 different states show the extent to which mislabeling can expose consumers to unexpectedly high levels of mercury, a harmful pollutant.

Fishery stock "substitutions"—which falsely present a fish of the same species, but from a different geographic origin—are the most dangerous mislabeling offense, according to new research by University of Hawai‘i at Mānoa scientists.


Fish market in Oahu's Chinatown. Photo courtesy Flickr user Michelle Lee.

“Accurate labeling of seafood is essential to allow consumers to choose sustainable fisheries,” said UH Mānoa biologist Peter B. Marko, lead author of the new study published in the scientific journal PLOS One. “But consumers also rely on labels to protect themselves from unhealthy mercury exposure. Seafood mislabeling distorts the true abundance of fish in the sea, defrauds consumers, and can cause unwanted exposure to harmful pollutants such as mercury.”

The study included two kinds of fish: those labeled as Marine Stewardship Council- (MSC-) certified Chilean sea bass, and those labeled simply as Chilean sea bass (uncertified). The MSC-certified version is supposed to be sourced from the Southern Ocean waters of South Georgia, near Antarctica, far away from man-made sources of pollution.  MSC-certified fish is often favored by consumers seeking sustainably harvested seafood but is also potentially attractive given its consistently low levels of mercury.

In a previous study, the scientists had determined that fully 20 percent of fish purchased as Chilean sea bass were not genetically identifiable as such. Further, of those Chilean sea bass positively identified using DNA techniques, 15 percent had genetic markers that indicated that they were not sourced from the South Georgia fishery.

In the new study, the scientists used the same fish samples to collect detailed mercury measurements.  When they compared the mercury in verified, MSC-certified sea bass with the mercury levels of verified, non-certified sea bass, they found no significant difference in the levels. That’s not the story you would have expected based on what is known about geographic patterns of mercury accumulation in Chilean sea bass.

“What’s happening is that the species are being substituted,” Marko explained. “The ones that are substituted for MSC-certified Chilean sea bass tend to have very low mercury, whereas those substituted for uncertified fish tend to have very high mercury.  These substitutions skew the pool of fish used for MSC comparison purposes, making certified and uncertified fish appear to be much more different than they actually are.”

But there’s another confounding factor. Even within the verified, MSC-certified Chilean sea bass samples, certain fish had very high mercury levels—up to 2 or 3 times higher than expected, and sometimes even greater than import limits to some countries.

Marko and his team again turned to genetics to learn more about these fishes’ true nature.  “It turns out that the fish with unexpectedly high mercury originated from some fishery other than the certified fishery in South Georgia,” said Marko. “Most of these fish had mitochondrial DNA that indicated they were from Chile.  Thus, fishery stock substitutions are also contributing to the pattern by making MSC-certified fish appear to have more mercury than they really should have.”

The bottom line:  Most consumers already know that mercury levels vary between species, and many public outreach campaigns have helped educate the public about which fish species to minimize or avoid.  Less appreciated is the fact that mercury varies considerably within a species.

“Because mercury accumulation varies within a species’ geographic range, according to a variety of environmental factors, the location where the fish is harvested matters a great deal,” Marko said.

“Although on average MSC-certified fish is a healthier option than uncertified fish, with respect to mercury contamination, our study shows that fishery-stock substitutions can result in a larger proportional increase in mercury,” Marko said. “We recommend that consumer advocates take a closer look at the variation in mercury contamination depending on the geographic source of the fishery stock when they consider future seafood consumption guidelines.”

CITATION:

Marko PB, Nance HA, van den Hurk P (2014) Seafood Substitutions Obscure Patterns of Mercury Contamination in Patagonian Toothfish (Dissostichus eleginoides) or “Chilean Sea Bass”. PLoS ONE 9(8): e104140. doi: 10.1371/journal.pone.0104140

University of Hawaiʻi at Mānoa

Contact:
Peter Marko, (808) 956-6146
Associate Professor, Biology
Talia Ogliore, (808) 956-4531
Public Information Officer, Vice Chancellor for Research

Talia S Ogliore | Eurek Alert!
Further information:
http://manoa.hawaii.edu/news/article.php?aId=6675

Further reports about: DNA contamination exposure fishery seafood species techniques

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>