Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find key mechanism in transition to alcohol dependence

01.06.2011
Finding could lead to development of drugs that decrease heavy alcohol consumption

A team of Scripps Research Institute scientists has found a key biological mechanism underpinning the transition to alcohol dependence. This finding opens the door to the development of drugs to manage excessive alcohol consumption.

"Our focus in this study, like much of our lab's research, was to examine the role of the brain's stress system in compulsive alcohol drinking driven by the aversive aspects of alcohol withdrawal," said Scripps Research Associate Professor Marisa Roberto, Ph.D., senior author of the study.

"A major goal for this study," added Research Associate Nicholas Gilpin, Ph.D., the paper's first author, "was to determine the neural circuitry that mediates the transition to alcohol dependence."

In the new research, published in the June 1, 2011 issue of the journal Biological Psychiatry, the Scripps Research scientists demonstrated the key role of a receptor —a structure that binds substances, triggering certain biological effects—for neuropeptide Y in a part of the brain known as the central amygdala. The amygdala, a group of nuclei deep within the medial temporal lobes, performs an important role in the processing and memory of emotional reactions.

"We've known for quite some time that neuropeptide Y is an endogenous [naturally occurring] anti-stress agent," says Markus Heilig, clinical director of the National Institute of Alcohol Abuse and Alcoholism (NIAAA). "We've also known that development of alcohol dependence gives rise to increased sensitivity to stress. This paper elegantly and logically brings these two lines of research together. It supports the idea that strengthening neuropeptide Y transmission in the amygdala would be an attractive treatment for alcoholism. The challenge remains to develop clinically useful medications based on this principle."

Discovering the Circuitry

Building on Gilpin's previous work on neuropeptide Y, in the new project, Gilpin, Roberto, and colleagues observed the effects of the administration neuropeptide Y in the central amygdala on alcohol drinking in rats. Alcohol-dependent rats were allowed to press levers for ethanol and water during daily withdrawal from chronic alcohol exposure.

"Normally, the transition to alcohol dependence is accompanied by gradually escalating levels of alcohol consumption during daily withdrawals," Gilpin explained. "The aim of this protocol was to examine whether neuropeptide Y infusions during daily withdrawals would block this escalation of alcohol drinking."

The scientists report a suppression of alcohol consumption with chronic neuropeptide Y infusions and detailed some of the neurocircuitry involved. Ethanol normally produces robust increases in inhibitory GABAergic transmission—GABA is another neurotransmitter—in the central amygdala, but this effect is blocked and reversed by neuropeptide Y.

Gilpin notes the scientists were surprised at one aspect of the findings—the role of a subset of neuropeptide Y receptors known as Y2 receptors. "Previous behavioral evidence suggested that antagonism of Y2 receptors in whole brain suppresses alcohol drinking, similar to the effects of neuropeptide Y," he said. "However, our data suggest that Y2 receptor blockade in central amygdala might actually increase alcohol drinking, presumably by affecting pre-synaptic release of GABA. These data also suggest that antagonism of post-synaptic Y1 receptors in central amygdala provides a viable pharmacotherapeutic strategy, a hypothesis supported by previous work from other labs."

Two additional aspects of the findings are worth noting, Roberto says. First, repeated neuropeptide Y administration not only blocked the development of excessive alcohol consumption in dependent rats, but also tempered the moderate increase in alcohol consumption following periods of abstinence in non-dependent rats. Second, neuropeptide Y exhibited long-term efficacy in suppressing alcohol self-administration, highlighting the potential of neuropeptide Y treatments for a clinical setting.

In addition to Roberto and Gilpin, authors of this paper, titled "Neuropeptide Y Opposes Alcohol Effects on GABA Release in Amygdala and Blocks the Transition to Alcohol Dependence" and scheduled to appear in the June 1, 2011 print edition of Biological Psychiatry, include Kaushik Misra, Melissa Herman, Maureen Cruz, and George Koob, all of Scripps Research. See http://www.ncbi.nlm.nih.gov/pubmed/21459365 .

This project was supported by the National Institutes of Health's National Institute on Alcohol Abuse and Alcoholism, and the Pearson Center for Alcoholism and Addiction Research at Scripps Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>