Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find key mechanism in transition to alcohol dependence

01.06.2011
Finding could lead to development of drugs that decrease heavy alcohol consumption

A team of Scripps Research Institute scientists has found a key biological mechanism underpinning the transition to alcohol dependence. This finding opens the door to the development of drugs to manage excessive alcohol consumption.

"Our focus in this study, like much of our lab's research, was to examine the role of the brain's stress system in compulsive alcohol drinking driven by the aversive aspects of alcohol withdrawal," said Scripps Research Associate Professor Marisa Roberto, Ph.D., senior author of the study.

"A major goal for this study," added Research Associate Nicholas Gilpin, Ph.D., the paper's first author, "was to determine the neural circuitry that mediates the transition to alcohol dependence."

In the new research, published in the June 1, 2011 issue of the journal Biological Psychiatry, the Scripps Research scientists demonstrated the key role of a receptor —a structure that binds substances, triggering certain biological effects—for neuropeptide Y in a part of the brain known as the central amygdala. The amygdala, a group of nuclei deep within the medial temporal lobes, performs an important role in the processing and memory of emotional reactions.

"We've known for quite some time that neuropeptide Y is an endogenous [naturally occurring] anti-stress agent," says Markus Heilig, clinical director of the National Institute of Alcohol Abuse and Alcoholism (NIAAA). "We've also known that development of alcohol dependence gives rise to increased sensitivity to stress. This paper elegantly and logically brings these two lines of research together. It supports the idea that strengthening neuropeptide Y transmission in the amygdala would be an attractive treatment for alcoholism. The challenge remains to develop clinically useful medications based on this principle."

Discovering the Circuitry

Building on Gilpin's previous work on neuropeptide Y, in the new project, Gilpin, Roberto, and colleagues observed the effects of the administration neuropeptide Y in the central amygdala on alcohol drinking in rats. Alcohol-dependent rats were allowed to press levers for ethanol and water during daily withdrawal from chronic alcohol exposure.

"Normally, the transition to alcohol dependence is accompanied by gradually escalating levels of alcohol consumption during daily withdrawals," Gilpin explained. "The aim of this protocol was to examine whether neuropeptide Y infusions during daily withdrawals would block this escalation of alcohol drinking."

The scientists report a suppression of alcohol consumption with chronic neuropeptide Y infusions and detailed some of the neurocircuitry involved. Ethanol normally produces robust increases in inhibitory GABAergic transmission—GABA is another neurotransmitter—in the central amygdala, but this effect is blocked and reversed by neuropeptide Y.

Gilpin notes the scientists were surprised at one aspect of the findings—the role of a subset of neuropeptide Y receptors known as Y2 receptors. "Previous behavioral evidence suggested that antagonism of Y2 receptors in whole brain suppresses alcohol drinking, similar to the effects of neuropeptide Y," he said. "However, our data suggest that Y2 receptor blockade in central amygdala might actually increase alcohol drinking, presumably by affecting pre-synaptic release of GABA. These data also suggest that antagonism of post-synaptic Y1 receptors in central amygdala provides a viable pharmacotherapeutic strategy, a hypothesis supported by previous work from other labs."

Two additional aspects of the findings are worth noting, Roberto says. First, repeated neuropeptide Y administration not only blocked the development of excessive alcohol consumption in dependent rats, but also tempered the moderate increase in alcohol consumption following periods of abstinence in non-dependent rats. Second, neuropeptide Y exhibited long-term efficacy in suppressing alcohol self-administration, highlighting the potential of neuropeptide Y treatments for a clinical setting.

In addition to Roberto and Gilpin, authors of this paper, titled "Neuropeptide Y Opposes Alcohol Effects on GABA Release in Amygdala and Blocks the Transition to Alcohol Dependence" and scheduled to appear in the June 1, 2011 print edition of Biological Psychiatry, include Kaushik Misra, Melissa Herman, Maureen Cruz, and George Koob, all of Scripps Research. See http://www.ncbi.nlm.nih.gov/pubmed/21459365 .

This project was supported by the National Institutes of Health's National Institute on Alcohol Abuse and Alcoholism, and the Pearson Center for Alcoholism and Addiction Research at Scripps Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>