Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find key mechanism in transition to alcohol dependence

01.06.2011
Finding could lead to development of drugs that decrease heavy alcohol consumption

A team of Scripps Research Institute scientists has found a key biological mechanism underpinning the transition to alcohol dependence. This finding opens the door to the development of drugs to manage excessive alcohol consumption.

"Our focus in this study, like much of our lab's research, was to examine the role of the brain's stress system in compulsive alcohol drinking driven by the aversive aspects of alcohol withdrawal," said Scripps Research Associate Professor Marisa Roberto, Ph.D., senior author of the study.

"A major goal for this study," added Research Associate Nicholas Gilpin, Ph.D., the paper's first author, "was to determine the neural circuitry that mediates the transition to alcohol dependence."

In the new research, published in the June 1, 2011 issue of the journal Biological Psychiatry, the Scripps Research scientists demonstrated the key role of a receptor —a structure that binds substances, triggering certain biological effects—for neuropeptide Y in a part of the brain known as the central amygdala. The amygdala, a group of nuclei deep within the medial temporal lobes, performs an important role in the processing and memory of emotional reactions.

"We've known for quite some time that neuropeptide Y is an endogenous [naturally occurring] anti-stress agent," says Markus Heilig, clinical director of the National Institute of Alcohol Abuse and Alcoholism (NIAAA). "We've also known that development of alcohol dependence gives rise to increased sensitivity to stress. This paper elegantly and logically brings these two lines of research together. It supports the idea that strengthening neuropeptide Y transmission in the amygdala would be an attractive treatment for alcoholism. The challenge remains to develop clinically useful medications based on this principle."

Discovering the Circuitry

Building on Gilpin's previous work on neuropeptide Y, in the new project, Gilpin, Roberto, and colleagues observed the effects of the administration neuropeptide Y in the central amygdala on alcohol drinking in rats. Alcohol-dependent rats were allowed to press levers for ethanol and water during daily withdrawal from chronic alcohol exposure.

"Normally, the transition to alcohol dependence is accompanied by gradually escalating levels of alcohol consumption during daily withdrawals," Gilpin explained. "The aim of this protocol was to examine whether neuropeptide Y infusions during daily withdrawals would block this escalation of alcohol drinking."

The scientists report a suppression of alcohol consumption with chronic neuropeptide Y infusions and detailed some of the neurocircuitry involved. Ethanol normally produces robust increases in inhibitory GABAergic transmission—GABA is another neurotransmitter—in the central amygdala, but this effect is blocked and reversed by neuropeptide Y.

Gilpin notes the scientists were surprised at one aspect of the findings—the role of a subset of neuropeptide Y receptors known as Y2 receptors. "Previous behavioral evidence suggested that antagonism of Y2 receptors in whole brain suppresses alcohol drinking, similar to the effects of neuropeptide Y," he said. "However, our data suggest that Y2 receptor blockade in central amygdala might actually increase alcohol drinking, presumably by affecting pre-synaptic release of GABA. These data also suggest that antagonism of post-synaptic Y1 receptors in central amygdala provides a viable pharmacotherapeutic strategy, a hypothesis supported by previous work from other labs."

Two additional aspects of the findings are worth noting, Roberto says. First, repeated neuropeptide Y administration not only blocked the development of excessive alcohol consumption in dependent rats, but also tempered the moderate increase in alcohol consumption following periods of abstinence in non-dependent rats. Second, neuropeptide Y exhibited long-term efficacy in suppressing alcohol self-administration, highlighting the potential of neuropeptide Y treatments for a clinical setting.

In addition to Roberto and Gilpin, authors of this paper, titled "Neuropeptide Y Opposes Alcohol Effects on GABA Release in Amygdala and Blocks the Transition to Alcohol Dependence" and scheduled to appear in the June 1, 2011 print edition of Biological Psychiatry, include Kaushik Misra, Melissa Herman, Maureen Cruz, and George Koob, all of Scripps Research. See http://www.ncbi.nlm.nih.gov/pubmed/21459365 .

This project was supported by the National Institutes of Health's National Institute on Alcohol Abuse and Alcoholism, and the Pearson Center for Alcoholism and Addiction Research at Scripps Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>