Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find new way to attack cancerous cells

08.06.2010
The findings open the door to the development of more effective therapies for lymphomas and leukemias

Scripps Research Institute scientists have discovered a new way to target and destroy a type of cancerous cell. The findings may lead to the development of new therapies to treat lymphomas, leukemias, and related cancers.

The study, which appears in the June 10, 2010 edition of the journal Blood, showed in animal models the new technique was successful in drastically reducing B cell lymphoma, a cancer of immune molecules called B cells.

"[The method] worked immediately," said Scripps Research Professor James Paulson, who led the research. "We are very interested in moving this technology forward to see if it would be applicable to treatment of humans and to investigate other applications for this kind of targeting."

A Sweet Spot

In his research program at Scripps Research, Paulson has studied glycoproteins, which are proteins decorated with sugars, for many years. While these molecules have traditionally proven challenging to understand, limiting their pharmaceutical applications, Paulson has pioneered new techniques to study and manipulate these enigmatic molecules.

In the new research, Paulson and his colleagues applied some of the lab's insights to a problem with great medical relevance—finding a new way to target and destroy cancer cells.

Specifically, in the new study the team set out to attack B cell lymphoma (which includes Hodgkin lymphoma and non-Hodgkin lymphoma), a type of cancer diagnosed most frequently in older individuals and those with compromised immune systems. Each year approximately 70,000 people are diagnosed with B cell lymphomas in the United States alone, according to the American Cancer Society. While the drug rituximab is often effective at treating the disease, each year 22,000 patients still die from B cell malignancies.

Normally, B cells provide an important immune function circulating throughout the bloodstream to help in the attack of infectious agents. But when B cells become cancerous, the question becomes how to pick them out of the crowd of other molecules in the body to target them for destruction, ideally without affecting surrounding tissues.

Because of his previous research, Paulson knew that B cells had a unique receptor protein on their surfaces that recognized certain sugars found on glycoproteins. Could the team create a viable potential therapeutic that carried these same sugars to identify and target these cells?

Toward a "Magic Bullet"

Paulson and colleagues decided to try a unique approach to this problem.

The scientists combined two different types of molecules into one, using both new and tried-and-true technology. One part of the potential therapeutic was composed of a specialized sugar (ligand) recognized by the B cell receptor, called CD22, expressed on the surface of B cells. This was attached to the surface of the other portion of the potential therapeutic, a nanoparticle called a "liposome," loaded with a potent dose of a proven chemotherapy drug.

"The advantage is that we already know a lot about how liposomes act in the body because they are approved drugs," said Paulson. "They have a long circulatory half-life. They are formulated so they are not taken up by the macrophages in the liver. So we just used the same formulation, attached these ligands, and went right into in vivo studies."

The chemotherapy drug chosen was doxorubicin, which is used in the treatment of a wide range of cancers. First identified in the 1950s, doxorubicin was originally isolated from bacteria found in soil samples taken from a 13th-century Italian castle. The team used a nanoparticle formulation of doxorubicin called Doxil, in which the drug is encapsulated inside the liposomal nanoparticle, which Paulson explains protects normal cells from the drug until it reaches the cancer.

Normally Doxil is passively delivered to tumors by exiting leaky tumor vasculature, and the drug slowly leaks out to kill the tumor. But by decorating the nanoparticles with the CD22 ligand, the team made the nanoparticles into a type of Trojan horse that is actively targeted to and taken up by human lymphoma B cells, carrying the drug inside the cell.

In the current research, the team administered their new compound to immune-compromised mice that had been infected with B cell lymphoma cells (Daudi Burkitt type). The team used two different formulations of the molecule, one decorated with two percent ligands, the other with five percent. The mice received only one dose.

The results were remarkable. No mouse in the control group lived to the end of the 100-day trial, but five of the eight mice receiving the higher ligand dose of the compound survived.

The scientists then looked to see if they could detect any residual tumor cells in the survivors, knowing that in a mouse that is paralyzed by the disease 95 percent of the cells in the bone marrow are tumor cells.

"When we looked at the bone marrow of those that had survived to 100 days, we couldn't detect any [tumor cells]," said Paulson. "Our detection limit was down to 0.3 percent. It was pretty impressive."

To extend the results, the scientists examined their compound's activity in blood samples from human patients with three types of B cell lymphomas—hairy cell leukemia, marginal zone lymphoma, and chronic lymphocytic leukemia. The scientists found that the compound also effectively bound to and destroyed these diseased B cells.

Encouraged by the results, the team is now working to further improve the drug platform, looking for ways to increase the specificity of B cell targeting as well as exploring the technology's use with other chemotherapy agents.

The first author of the paper, "In vivo targeting of B-cell lymphoma with glycan ligands of CD22," was Weihsu Chen of Scripps Research. In addition to Paulson, additional authors were Gladys Completo of Scripps Research, Darren Sigal, and Alan Saven of Scripps Clinic Medical Group, and Paul Crocker of the University of Dundee (UK). For more information, see http://bloodjournal.hematologylibrary.org/cgi/content/abstract/blood-2009-12-257386v1

The research was funded by grants from the National Institute of Allergy and Infectious Diseases (NIAID) and the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>