Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute Study Points to Potential New Therapies for Cancer and Other Diseases

28.11.2012
Researchers at The Scripps Research Institute (TRSI) are fueling the future of cancer treatment by improving a powerful tool in disease defense: the body’s immune system. By revealing a novel but widespread cell signaling process, the scientists may have found a way to manipulate an important component of the immune system into more effectively fighting disease.

The study, recently published online ahead of print by the journal Blood, shows that disabling a particular enzyme, called ItpkB, in mice improves the function of a type of immune cell called Natural Killer cells.

“This is an exciting finding because it could possibly lead to the development of drugs that improve Natural Killer cell function,” said TSRI Associate Professor Karsten Sauer, PhD, who led the study. "Natural Killer cells have gained clinical interest as innovative biological therapeutics for certain cancers and also in certain infectious diseases.”

The Body’s ‘SWAT Team’

Natural Killer cells patrol the body and detect characteristic alterations on the surface of cancer cells or virus-infected cells. Through a complicated and little understood signaling machinery—a domino effect of molecular reactions in a cell that ultimately produces a certain signal—Natural Killer cells then destroy such ”stressed” cells.

Compared to other types of immune cells, Natural Killer cells kill these cells quickly. This makes Natural Killer cells important early responders of the immune system. Not surprisingly, researchers have explored engaging this "SWAT team" of the body therapeutically, particularly in blood cancers.

However, to date, the therapeutic efficacy of Natural Killer cells has been limited. “A key bottleneck is our limited understanding of signaling mechanisms that dampen Natural Killer cell function,” Sauer said.

Sauer and colleagues’ new research reveals crucial details of this puzzle.

A Way to Prime the Attack

The Sauer group had previously identified ItpkB as a key regulator of immune function. ItpkB acts primarily by producing IP4, a small molecule messenger that controls the functions of various other important signaling molecules. IP4 can improve or inhibit signaling depending on the cell type in which it is produced.
The new research showed that Natural Killer cells from mice lacking ItpkB show elevated signaling and function better than Natural Killer cells that have the enzyme. As a result, mice lacking ItpkB are more effective than mice expressing ItpkB in attacking cells that display characteristic surface changes of cancer cells.

“The enzyme ItpkB has unique features that facilitate its highly specific inhibition by small molecules,” said Sauer. "Our findings suggest that such compounds could possibly be used to improve Natural Killer cell function therapeutically. If successful, this could overcome a bottleneck and engage the body's SWAT team to fight cancer."

In addition to Sauer, Eugene Park of Washington University School of Medicine was a co-first author of the study, "Inositol Tetrakisphosphate Limits NK Cell Effector Functions by Controlling Phosphoinositide 3-Kinase Signaling.” Other authors include Sabine Siegemund, Luise Sternberg and Stephanie Rigaud of TSRI and Anthony R. French, Joseph A. Wahle, A. Helena Jonsson, Wayne M. Yokoyama and co-corresponding author Yina H. Huang of Washington University School of Medicine. For more information, see http://bloodjournal.hematologylibrary.org/content/early/2012/11/20/blood-2012-05-429241.abstract.

The research was supported by grants from the National Institutes of Health (AI070845, GM088647, AI089805 and AI007606), The Leukemia and Lymphoma Society Scholar Award 1440-11 and Deutsche Forschungsgemeinschaft fellowship SI 1547/1-1.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, TSRI has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>