Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida scientists shed light on age-related memory loss and possible treatments

03.04.2012
Fruit flies offer insights on aging

Scientists from the Florida campus of The Scripps Research Institute have shown in animal models that the loss of memory that comes with aging is not necessarily a permanent thing.

In a new study published this week in an advance, online edition of the journal Proceedings of the National Academy of Sciences, Ron Davis, chair of the Department of Neuroscience at Scripps Florida, and Ayako Tonoki-Yamaguchi, a research associate in Davis's lab, took a close look at memory and memory traces in the brains of both young and old fruit flies.

What they found is that like other organisms—from mice to humans—there is a defect that occurs in memory with aging. In the case of the fruit fly, the ability to form memories lasting a few hours (intermediate-term memory) is lost due to age-related impairment of the function of certain neurons. Intriguingly, the scientists found that stimulating those same neurons can reverse these age-related memory defects.

"This study shows that once the appropriate neurons are identified in people, in principle at least one could potentially develop drugs to hit those neurons and rescue those memories affected by the aging process," Davis said. "In addition, the biochemistry underlying memory formation in fruit flies is remarkably conserved with that in humans so that everything we learn about memory formation in flies is likely applicable to human memory and the disorders of human memory."

While no one really understands what is altered in the brain during the aging process, in the current study the scientists were able to use functional cellular imaging to monitor the changes in the fly's neuron activity before and after learning to view those changes.

"We are able to peer down into the fly brain and see changes in the brain," Davis said. "We found changes that appear to reflect how intermediate-term memory is encoded in these neurons."

Olfactory memory, which was used by the scientists, is the most widely studied form of memory in fruit flies—basically pairing an odor with a mild electric shock. These tactics produce short-term memories that persist for around half an hour, intermediate-term memory that lasts a few hours, and long-term memory that persists for days.

The team found that in aged animals, the signs of encoded memory were absent after a few hours. In that way, the scientists also learned exactly which neurons in the fly are altered by aging to produce intermediate-term memory impairment. This advance, Davis notes, should greatly help scientists understand how aging alters neuronal function.

Intriguingly, the scientists took the work a step further and stimulated these neurons to see if the memory could be rescued. To do this, the scientists placed either cold-activated or heat-activated ion channels in the neurons known to become defective with aging and then used cold, or heat, to stimulate them. In both cases, the intermediate-term memory was successfully rescued.

The study, "Aging Impairs Intermediate-Term Behavioral Memory by Disrupting the Neuron Memory Trace," was supported by the Ellison Medical Foundation and the Japan Society for the Promotion of Science.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>