Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Identify Neurotranmitters that Lead to Forgetting

10.05.2012
While we often think of memory as a way of preserving the essential idea of who we are, little thought is given to the importance of forgetting to our wellbeing, whether what we forget belongs in the “horrible memories department” or just reflects the minutia of day-to-day living.
Despite the fact that forgetting is normal, exactly how we forget—the molecular, cellular, and brain circuit mechanisms underlying the process—is poorly understood.

Now, in a study that appears in the May 10, 2012 issue of the journal Neuron, scientists from the Florida campus of The Scripps Research Institute have pinpointed a mechanism that is essential for forming memories in the first place and, as it turns out, is equally essential for eliminating them after memories have formed.

“This study focuses on the molecular biology of active forgetting,” said Ron Davis, chair of the Scripps Research Department of Neuroscience who led the project. “Until now, the basic thought has been that forgetting is mostly a passive process. Our findings make clear that forgetting is an active process that is probably regulated.”

The Two Faces of Dopamine

To better understand the mechanisms for forgetting, Davis and his colleagues studied Drosophila or fruit flies, a key model for studying memory that has been found to be highly applicable to humans. The flies were put in situations where they learned that certain smells were associated with either a positive reinforcement like food or a negative one, such as a mild electric shock. The scientists then observed changes in the flies’ brains as they remembered or forgot the new information.

The results showed that a small subset of dopamine neurons actively regulate the acquisition of memories and the forgetting of these memories after learning, using a pair of dopamine receptors in the brain. Dopamine is a neurotransmitter that plays an important role in a number of processes including punishment and reward, memory, learning and cognition.

But how can a single neurotransmitter, dopamine, have two seemingly opposite roles in both forming and eliminating memories? And how can these two dopamine receptors serve acquiring memory on the one hand, and forgetting on the other?

The study suggests that when a new memory is first formed, there also exists an active, dopamine-based forgetting mechanism—ongoing dopamine neuron activity—that begins to erase those memories unless some importance is attached to them, a process known as consolidation that may shield important memories from the dopamine-driven forgetting process.

The study shows that specific neurons in the brain release dopamine to two different receptors known as dDA1 and DAMB, located on what are called mushroom bodies because of their shape; these densely packed networks of neurons are vital for memory and learning in insects. The study found the dDA1 receptor is responsible for memory acquisition, while DAMB is required for forgetting.

When dopamine neurons begin the signaling process, the dDA1 receptor becomes overstimulated and begins to form memories, an essential part of memory acquisition. Once that memory is acquired, however, these same dopamine neurons continue signaling. Except this time, the signal goes through the DAMB receptor, which triggers forgetting of those recently acquired, but not yet consolidated, memories.

Jacob Berry, a graduate student in the Davis lab who led the experimentation, showed that inhibiting the dopamine signaling after learning enhanced the flies’ memory. Hyperactivating those same neurons after learning erased memory. And, a mutation in one of the receptors, dDA1, produced flies unable to learn, while a mutation in the other, DAMB, blocked forgetting.

Intriguing Issues

While Davis was surprised by the mechanisms the study uncovered, he was not surprised that forgetting is an active process. “Biology isn’t designed to do things in a passive way,” he said. “There are active pathways for constructing things, and active ones for degrading things. Why should forgetting be any different?”

The study also brings into a focus a lot of intriguing issues, Davis said—savant syndrome, for example.

“Savants have a high capacity for memory in some specialized areas,” he said. “But maybe it isn’t memory that gives them this capacity, maybe they have a bad forgetting mechanism. This also might be a strategy for developing drugs to promote cognition and memory—what about drugs that inhibit forgetting as cognitive enhancers?”

In addition to Davis and Berry, authors of the paper “Dopamine is required for Learning and Forgetting in Drosophila” include Isaac Cervantes-Sandoval and Eric P. Nicholas, also of Scripps Research. See http://www.cell.com/neuron/abstract/S0896-6273(12)00338-8

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>