Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Identify Neurotranmitters that Lead to Forgetting

10.05.2012
While we often think of memory as a way of preserving the essential idea of who we are, little thought is given to the importance of forgetting to our wellbeing, whether what we forget belongs in the “horrible memories department” or just reflects the minutia of day-to-day living.
Despite the fact that forgetting is normal, exactly how we forget—the molecular, cellular, and brain circuit mechanisms underlying the process—is poorly understood.

Now, in a study that appears in the May 10, 2012 issue of the journal Neuron, scientists from the Florida campus of The Scripps Research Institute have pinpointed a mechanism that is essential for forming memories in the first place and, as it turns out, is equally essential for eliminating them after memories have formed.

“This study focuses on the molecular biology of active forgetting,” said Ron Davis, chair of the Scripps Research Department of Neuroscience who led the project. “Until now, the basic thought has been that forgetting is mostly a passive process. Our findings make clear that forgetting is an active process that is probably regulated.”

The Two Faces of Dopamine

To better understand the mechanisms for forgetting, Davis and his colleagues studied Drosophila or fruit flies, a key model for studying memory that has been found to be highly applicable to humans. The flies were put in situations where they learned that certain smells were associated with either a positive reinforcement like food or a negative one, such as a mild electric shock. The scientists then observed changes in the flies’ brains as they remembered or forgot the new information.

The results showed that a small subset of dopamine neurons actively regulate the acquisition of memories and the forgetting of these memories after learning, using a pair of dopamine receptors in the brain. Dopamine is a neurotransmitter that plays an important role in a number of processes including punishment and reward, memory, learning and cognition.

But how can a single neurotransmitter, dopamine, have two seemingly opposite roles in both forming and eliminating memories? And how can these two dopamine receptors serve acquiring memory on the one hand, and forgetting on the other?

The study suggests that when a new memory is first formed, there also exists an active, dopamine-based forgetting mechanism—ongoing dopamine neuron activity—that begins to erase those memories unless some importance is attached to them, a process known as consolidation that may shield important memories from the dopamine-driven forgetting process.

The study shows that specific neurons in the brain release dopamine to two different receptors known as dDA1 and DAMB, located on what are called mushroom bodies because of their shape; these densely packed networks of neurons are vital for memory and learning in insects. The study found the dDA1 receptor is responsible for memory acquisition, while DAMB is required for forgetting.

When dopamine neurons begin the signaling process, the dDA1 receptor becomes overstimulated and begins to form memories, an essential part of memory acquisition. Once that memory is acquired, however, these same dopamine neurons continue signaling. Except this time, the signal goes through the DAMB receptor, which triggers forgetting of those recently acquired, but not yet consolidated, memories.

Jacob Berry, a graduate student in the Davis lab who led the experimentation, showed that inhibiting the dopamine signaling after learning enhanced the flies’ memory. Hyperactivating those same neurons after learning erased memory. And, a mutation in one of the receptors, dDA1, produced flies unable to learn, while a mutation in the other, DAMB, blocked forgetting.

Intriguing Issues

While Davis was surprised by the mechanisms the study uncovered, he was not surprised that forgetting is an active process. “Biology isn’t designed to do things in a passive way,” he said. “There are active pathways for constructing things, and active ones for degrading things. Why should forgetting be any different?”

The study also brings into a focus a lot of intriguing issues, Davis said—savant syndrome, for example.

“Savants have a high capacity for memory in some specialized areas,” he said. “But maybe it isn’t memory that gives them this capacity, maybe they have a bad forgetting mechanism. This also might be a strategy for developing drugs to promote cognition and memory—what about drugs that inhibit forgetting as cognitive enhancers?”

In addition to Davis and Berry, authors of the paper “Dopamine is required for Learning and Forgetting in Drosophila” include Isaac Cervantes-Sandoval and Eric P. Nicholas, also of Scripps Research. See http://www.cell.com/neuron/abstract/S0896-6273(12)00338-8

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>