Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Uncover Strong Support for Once-Marginalized Theory on Parkinson’s Disease

26.04.2012
University of California, San Diego scientists have used powerful computational tools and laboratory tests to discover new support for a once-marginalized theory about the underlying cause of Parkinson’s disease.
The new results conflict with an older theory that insoluble intracellular fibrils called amyloids cause Parkinson’s disease and other neurodegenerative diseases. Instead, the new findings provide a step-by-step explanation of how a “protein-run-amok” aggregates within the membranes of neurons and punctures holes in them to cause the symptoms of Parkinson’s disease.

The discovery, published in the March 2012 issue of the FEBS Journal, describes how á-synuclein (a-syn), can turn against us, particularly as we age. Modeling results explain how á-syn monomers penetrate cell membranes, become coiled and aggregate in a matter of nanoseconds into dangerous ring structures that spell trouble for neurons.

“The main point is that we think we can create drugs to give us an anti-Parkinson’s effect by slowing the formation and growth of these ring structures,” said Igor Tsigelny, lead author of the study and a research scientist at the San Diego Supercomputer Center and Department of Neurosciences, both at UC San Diego.

Familial Parkinson’s disease is caused in many cases by a limited number of protein mutations. One of the most toxic is A53T. Tsigelny’s team showed that the mutant form of á-syn not only penetrates neuronal membranes faster than normal á-syn, but the mutant protein also accelerates ring formation.

“The most dangerous assault on the neurons of Parkinson’s patients appears to be the relatively small á-syn ring structures themselves,” said Tsigelny. “It was once heretical to suggest that these ring structures, rather than long fibrils found in neurons of people having Parkinson’s disease, were responsible for the symptoms of the disease; however, the ring theory is becoming more and more accepted for this neurodegenerative disease and others such as Alzheimer’s disease. Our results support this shift in thinking.”

This image shows a construction of a possible ring oligomer position in the cell membrane after four nanoseconds of molecular dynamics simulations. Image courtesy of Igor Tsigelny, San Diego Supercomputer Center and Department of Neurosciences, UC San Diego.

The modeling results also are consistent with the electron microscopy images of neurons in Parkinson’s disease patients; the damaged neurons are riddled with ring structures.

Wasting no time, the modeling discoveries have spawned an intense hunt at UC San Diego for drug candidates that block ring formation in neuron membranes. The sophisticated modeling required involves a complex realm of science at the intersection of chemistry, physics, and statistical probabilities. A kaleidoscope of interacting forces in this realm makes á-syn proteins bump and tremble like they’re in an earthquake, coil and uncoil, and join together in pairs or larger groups of inventive ballroom dancers.

The modeling is creating a much better understanding of the mysterious a-syn protein itself, according to Tsigelny. A few years ago it was shown to accumulate in the central nervous system of patients with Parkinson’s disease and a related disorder called dementia with Lewy bodies.

The new modeling study has revealed precisely how two á-syn proteins insert their molecular toes into the membrane of a neuron, wiggle into it in only a few nanoseconds and immediately join together as a pair. The pair isn’t itself toxic; however, when more á-syn proteins join the dance, a key threshold is eventually crossed; polymerization accelerates into a ring structure that perforates the membrane, damaging the cell.

Tsigelny said many ring structures may be required to actually kill neurons, which are known for their durability. The nerve cells may be able to repair dozens of ring-induced perforations, keeping pace with a-syn assault. But at some point, the rate of perforations surpasses the ability of neurons to repair them. As a result, symptoms of Parkinson’s disease gradually appear and worsen.

“We think we can create a drug that stops the á-syn polymerization at the point of non-propagating dimers,” Tsigelny said. “By interrupting the polymerization at this crucial step, we may be able to slow the disease significantly.”

Tsigelny’s research team included Yuriy Sharikov, with SDSC and UC San Diego’s Department of Neurosciences; Wolfgang Wrasidlo, with the university’s Moores Cancer Center; and Tania Gonzalez, Paula A. Desplats, Leslie Crews, and Brian Spencer, all with UC San Diego’s Department of Neurosciences. The experimental validation studies were performed by Eliezer Masliah, a professor in the UC San Diego departments of Neurosciences and Pathology, and his associates. They relied on 3-D models of proteins, plus molecular dynamics simulations of the proteins, other modeling techniques and cell-culture experiments.

Given their deeper understanding of á-syn polymerization in neurons, they are now focused on understanding how monomers of á-syn stick to one another. Their search for drug candidates will include molecules that induce different conformations of á-syn proteins that are less inclined to stick together. Tsigelny said this effect, even if small, could reduce symptoms.

This computationally intensive approach includes an examination of the many possible three-dimensional arrangements of á-syn dimers, trimmers and tetramers. Pharmaceutical companies have used versions of the approach to develop drug candidates designed to bind to ‘anchor residues’ or ‘hot spots’ within target proteins. Algorithms assess in virtual experiments the theoretical ability of thousands of candidate drugs to bind to human proteins in the ever-expanding database of known 3-D structures of those proteins.

However, attempts to find drugs this way have generated promising candidates that fail in clinical trials with expensive regularity.

“Out of these failures we’ve come to appreciate that proteins change their shapes so often that what would appear to be a primary drug target may be present one nanosecond, gone the next, or it wasn’t relevant in the first place,” said Tsigelny, a physicist-turned-drug-designer.

Tsigelny’s approach takes advantage of classical drug-discovery algorithms, but adds additional analytical techniques to expand the search to include how a target protein’s conformations change in response to the forces operating on the scale of molecules.

“Sometimes, the drug-discovery models, despite being ‘nice looking,’ can be completely wrong,” Tsigelny said. “Scientists involved in drug discovery need to know when and to what extent to trust them. Even a slight shift in a cell’s environment can profoundly change the interactions of proteins with neighboring molecules. We think it’s realistically possible to design a drug to treat neurodegenerative diseases such as Parkinson’s disease and other diseases like diabetes with a more fundamental understanding of the proteins involved in those diseases.”

The research was funded by grants from the National Institutes of Health and Department of Energy, with computational support from Argonne National Laboratory’s IBM Blue Gene supercomputer as well as computational resources at SDSC.

Media Contact

Rex Graham, 858 232-2706, ragraham@ucsd.edu
Jan Zverina, 858 534-5111, jzverina@sdsc.edu
Warren R. Froelich, 858 822-3622, froelich@sdsc.edu

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>