Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover indicator that warns leukemia is progressing to more dangerous form

18.02.2009
Scientists at the Moores Cancer Center at the University of California, San Diego, Stanford University School of Medicine and other centers have identified a mechanism by which a chronic form of leukemia can progress into a deadlier stage of the disease.

The findings may provide physicians with an indicator of when this type of cancer – chronic myeloid leukemia (CML) – is progressing, enabling them to make more accurate prognoses for the disease and improved treatment choices.

"If we can predict when a patient is moving from the chronic phase in CML to the blast crisis stage, then we can hopefully intervene before it's too late," said Catriona H.M. Jamieson, MD, PhD, assistant professor of medicine at the UC San Diego School of Medicine and Director for Stem Cell Research at the Moores UCSD Cancer Center.

The findings, reported online during the week of February 16, 2009 in the Proceedings of the National Academy of Sciences, also shed light on the development of potentially treatment-resistant leukemia stem cells and provide insights for new strategies against CML and other cancers.

Led by Jamieson and Irving Weissman, MD, director of the Stem Cell Biology and Regenerative Medicine Institute at the Stanford University School of Medicine, the researchers discovered that when a molecular off-switch called glycogen synthase kinase (GSK) 3 beta becomes faulty in chronic stage CML cells, it fails to turn off another protein, beta-catenin. This in turn enables pre-leukemia stem cells to develop into leukemia stem cells and expand their numbers, leading to progression to the more dangerous "blast crisis" stage of CML. This errant off-switch is a potential therapeutic target, Jamieson explained.

"This paper further underscores the importance of the cell type and specific context of molecular events in the evolution of leukemia," Jamieson said. "It also highlights the malignant consequences of GSK 3 beta deregulation."

"This knowledge may enable us to design and develop more effective, personalized therapies for these patients," said staff research associate and co-first author Annelie Abrahamsson.

In CML, an enzyme called ABL goes in overdrive because of a chromosomal mix-up that occurs during blood cell development. The genes ABL and BCR fuse and produce a hybrid BCR-ABL enzyme that drives the excessive proliferation of white blood cells. CML progresses from a chronic stage in hematopoietic stem cells that carry BCR-ABL to the blast crisis stage. This stage is characterized by the over-production of beta-catenin in white blood cells called granulocyte macrophage progenitors (GMP) – in effect, leukemia stem cells.

According to Jamieson, a major roadblock in predicting and stopping the conversion of chronic CML to blast crisis stage was the failure to understand what turned on beta-catenin. The team showed that by injecting blast crisis CML progenitor cells – GMP – into mice lacking working immune systems, they could "transplant" leukemia into the animals. When they did this, they discovered that GSK 3 beta levels dropped. Looking more closely, they found an aberrant "misspliced" form of GSK 3 beta that was unable to turn off beta-catenin, suggesting a potential mechanism behind the change to blast crisis stage.

The scientists also showed that the mice that had received the cells with the bad form of GSK 3 beta developed granulocytic sarcomas, tumors that are seen in patients with the most advanced form of CML.

"Many investigators have questioned the usefulness of finding and purifying leukemia and cancer stem cells," said Weissman. "This paper shows why. The damage to the enzyme GSK 3 beta that prevents beta-catenin activation of cell proliferation occurs only in the GMP leukemia stem cells, which are only about 1 in 20 bone marrow cells. Trying to analyze the missplicing of GSK in the whole leukemia would not have worked.

"These kinds of changes in gene expression, which are not mutations, need pure cells to find them. The final proof of the cancer stem cell hypothesis will be to show whether a treatment specific for the changed gene expression eliminates the cancer in the patient."

"Downregulating beta-catenin and GSK deregulation may have other implications in many cancers," Jamieson said. "By studying CML, we can understand the molecular evolution of disease and the stepwise progression to cancer. It becomes a useful paradigm for understanding how cancers evolve and the pathways that are essential to escape the normal control mechanisms."

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

The “everywhere” protein: honour for the unravellor of its biology

19.10.2017 | Life Sciences

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>