Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover clue to preventing, and possibly reversing, rare childhood genetic disease

02.04.2012
Findings may have wider implications for other neurodegenerative diseases, such as Alzheimer's
Rutgers scientists think they have found a way to prevent and possibly reverse the most debilitating symptoms of a rare, progressive childhood degenerative disease that leaves children with slurred speech, unable to walk, and in a wheelchair before they reach adolescence.

In today's online edition of Nature Medicine, Karl Herrup, chair of the Department of Cell Biology and Neuroscience in the School of Arts and Sciences provides new information on why this genetic disease attacks the cerebellum – a part of the brain that controls movement coordination, equilibrium, and muscle tone – and other regions of the brain.

Using mouse and human brain tissue studies, Herrup and his colleagues at Rutgers found that in the brain tissue of young adults who died from axtaxia-telangiectasia, or A-T disease, a protein known as HDAC4 was in the wrong place. HDAC4 is known to regulate bone and muscle development, but it is also found in the nerve cells of the brain. The protein that is defective in A-T, they discovered, plays a critical role in keeping HDAC4 from ending up in the nucleus of the nerve cell instead of in the cytoplasm where it belongs. In a properly working nerve cell, the HDAC4 in the cytoplasm helps to prevent nerve cell degeneration; however, in the brain tissue of young adults who had died from A-T disease, the protein was in the nucleus where it attacked the histones – the small proteins that coat and protect the DNA.

"What we have found is a double-edged sword," said Herrup. "While the HDAC4 protein protected a neuron's function when it was in the cytoplasm, it was lethal in the nucleus."

To prove this point, Rutgers scientists analyzed mice, genetically engineered with the defective protein found in children with A-T, as well as wild mice. The animals were tested on a rotating rod to measure their motor coordination. While the normal mice were able to stay on the rod without any problems for five to six minutes, the mutant mice fell off within 15 to 20 seconds.

After being treated with trichostation A (TSA), a chemical compound that inhibits the ability of HDAC4 to modify proteins, they found that the mutant mice were able to stay on the rotating rod without falling off – almost as long as the normal mice.

Although the behavioral symptoms and brain cell loss in the engineered mice are not as severe as in humans, all of the biochemical signs of cell stress were reversed and the motor skills improved dramatically in the mice treated with TSA. This outcome proves that brain cell function could be restored, Herrup said.

"The caveat here is that we have fixed a mouse brain with less devastation and fewer problems than seen in a child with A-T disease," said Herrup. "But what this mouse data says is that we can take existing cells that are on their way to death and restore their function."

Neurological degeneration is not the only life-threatening effect associated with this genetic disease. A-T disease – which occurs in an estimated 1 in 40,000 births – causes the immune system to break down and leaves children extremely susceptible to cancers such as leukemia or lymphoma. There is no known cure and most die in their teens or early 20s. According to the AT Children's Project, many of those who die at a young age might not have been properly diagnosed, which may, in fact, make the disease even more common.

Herrup says although this discovery does not address all of the related medical conditions associated with the disease, saving existing brain cells – even those that are close to death – and restoring life-altering neurological functions would make a tremendous improvement in the lives of these children.

"We can never replace cells that are lost," said Herrup. "But what these mouse studies indicate is that we can take the cells that remain in the brains of these children and make them work better. This could improve the quality of life for these kids by unimaginable amounts."

Additionally, Herrup says, the research might provide insight into other neurodegenerative diseases. "If this is found to be true, then the work we've done on this rare disease of childhood may have a much wider application in helping to treat other diseases of the nervous system, even those that affect the elderly, like Alzheimer's," he said.

Robin Lally | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>