Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover clue to preventing, and possibly reversing, rare childhood genetic disease

02.04.2012
Findings may have wider implications for other neurodegenerative diseases, such as Alzheimer's
Rutgers scientists think they have found a way to prevent and possibly reverse the most debilitating symptoms of a rare, progressive childhood degenerative disease that leaves children with slurred speech, unable to walk, and in a wheelchair before they reach adolescence.

In today's online edition of Nature Medicine, Karl Herrup, chair of the Department of Cell Biology and Neuroscience in the School of Arts and Sciences provides new information on why this genetic disease attacks the cerebellum – a part of the brain that controls movement coordination, equilibrium, and muscle tone – and other regions of the brain.

Using mouse and human brain tissue studies, Herrup and his colleagues at Rutgers found that in the brain tissue of young adults who died from axtaxia-telangiectasia, or A-T disease, a protein known as HDAC4 was in the wrong place. HDAC4 is known to regulate bone and muscle development, but it is also found in the nerve cells of the brain. The protein that is defective in A-T, they discovered, plays a critical role in keeping HDAC4 from ending up in the nucleus of the nerve cell instead of in the cytoplasm where it belongs. In a properly working nerve cell, the HDAC4 in the cytoplasm helps to prevent nerve cell degeneration; however, in the brain tissue of young adults who had died from A-T disease, the protein was in the nucleus where it attacked the histones – the small proteins that coat and protect the DNA.

"What we have found is a double-edged sword," said Herrup. "While the HDAC4 protein protected a neuron's function when it was in the cytoplasm, it was lethal in the nucleus."

To prove this point, Rutgers scientists analyzed mice, genetically engineered with the defective protein found in children with A-T, as well as wild mice. The animals were tested on a rotating rod to measure their motor coordination. While the normal mice were able to stay on the rod without any problems for five to six minutes, the mutant mice fell off within 15 to 20 seconds.

After being treated with trichostation A (TSA), a chemical compound that inhibits the ability of HDAC4 to modify proteins, they found that the mutant mice were able to stay on the rotating rod without falling off – almost as long as the normal mice.

Although the behavioral symptoms and brain cell loss in the engineered mice are not as severe as in humans, all of the biochemical signs of cell stress were reversed and the motor skills improved dramatically in the mice treated with TSA. This outcome proves that brain cell function could be restored, Herrup said.

"The caveat here is that we have fixed a mouse brain with less devastation and fewer problems than seen in a child with A-T disease," said Herrup. "But what this mouse data says is that we can take existing cells that are on their way to death and restore their function."

Neurological degeneration is not the only life-threatening effect associated with this genetic disease. A-T disease – which occurs in an estimated 1 in 40,000 births – causes the immune system to break down and leaves children extremely susceptible to cancers such as leukemia or lymphoma. There is no known cure and most die in their teens or early 20s. According to the AT Children's Project, many of those who die at a young age might not have been properly diagnosed, which may, in fact, make the disease even more common.

Herrup says although this discovery does not address all of the related medical conditions associated with the disease, saving existing brain cells – even those that are close to death – and restoring life-altering neurological functions would make a tremendous improvement in the lives of these children.

"We can never replace cells that are lost," said Herrup. "But what these mouse studies indicate is that we can take the cells that remain in the brains of these children and make them work better. This could improve the quality of life for these kids by unimaginable amounts."

Additionally, Herrup says, the research might provide insight into other neurodegenerative diseases. "If this is found to be true, then the work we've done on this rare disease of childhood may have a much wider application in helping to treat other diseases of the nervous system, even those that affect the elderly, like Alzheimer's," he said.

Robin Lally | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>