Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists uncover clue to preventing, and possibly reversing, rare childhood genetic disease

Findings may have wider implications for other neurodegenerative diseases, such as Alzheimer's
Rutgers scientists think they have found a way to prevent and possibly reverse the most debilitating symptoms of a rare, progressive childhood degenerative disease that leaves children with slurred speech, unable to walk, and in a wheelchair before they reach adolescence.

In today's online edition of Nature Medicine, Karl Herrup, chair of the Department of Cell Biology and Neuroscience in the School of Arts and Sciences provides new information on why this genetic disease attacks the cerebellum – a part of the brain that controls movement coordination, equilibrium, and muscle tone – and other regions of the brain.

Using mouse and human brain tissue studies, Herrup and his colleagues at Rutgers found that in the brain tissue of young adults who died from axtaxia-telangiectasia, or A-T disease, a protein known as HDAC4 was in the wrong place. HDAC4 is known to regulate bone and muscle development, but it is also found in the nerve cells of the brain. The protein that is defective in A-T, they discovered, plays a critical role in keeping HDAC4 from ending up in the nucleus of the nerve cell instead of in the cytoplasm where it belongs. In a properly working nerve cell, the HDAC4 in the cytoplasm helps to prevent nerve cell degeneration; however, in the brain tissue of young adults who had died from A-T disease, the protein was in the nucleus where it attacked the histones – the small proteins that coat and protect the DNA.

"What we have found is a double-edged sword," said Herrup. "While the HDAC4 protein protected a neuron's function when it was in the cytoplasm, it was lethal in the nucleus."

To prove this point, Rutgers scientists analyzed mice, genetically engineered with the defective protein found in children with A-T, as well as wild mice. The animals were tested on a rotating rod to measure their motor coordination. While the normal mice were able to stay on the rod without any problems for five to six minutes, the mutant mice fell off within 15 to 20 seconds.

After being treated with trichostation A (TSA), a chemical compound that inhibits the ability of HDAC4 to modify proteins, they found that the mutant mice were able to stay on the rotating rod without falling off – almost as long as the normal mice.

Although the behavioral symptoms and brain cell loss in the engineered mice are not as severe as in humans, all of the biochemical signs of cell stress were reversed and the motor skills improved dramatically in the mice treated with TSA. This outcome proves that brain cell function could be restored, Herrup said.

"The caveat here is that we have fixed a mouse brain with less devastation and fewer problems than seen in a child with A-T disease," said Herrup. "But what this mouse data says is that we can take existing cells that are on their way to death and restore their function."

Neurological degeneration is not the only life-threatening effect associated with this genetic disease. A-T disease – which occurs in an estimated 1 in 40,000 births – causes the immune system to break down and leaves children extremely susceptible to cancers such as leukemia or lymphoma. There is no known cure and most die in their teens or early 20s. According to the AT Children's Project, many of those who die at a young age might not have been properly diagnosed, which may, in fact, make the disease even more common.

Herrup says although this discovery does not address all of the related medical conditions associated with the disease, saving existing brain cells – even those that are close to death – and restoring life-altering neurological functions would make a tremendous improvement in the lives of these children.

"We can never replace cells that are lost," said Herrup. "But what these mouse studies indicate is that we can take the cells that remain in the brains of these children and make them work better. This could improve the quality of life for these kids by unimaginable amounts."

Additionally, Herrup says, the research might provide insight into other neurodegenerative diseases. "If this is found to be true, then the work we've done on this rare disease of childhood may have a much wider application in helping to treat other diseases of the nervous system, even those that affect the elderly, like Alzheimer's," he said.

Robin Lally | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>