Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Show How Memory B Cells Stay 'In Class' to Fight Different Infections

08.05.2012
Scientists at The Scripps Research Institute have made an important discovery about the internal programming of B cells, the immune cells that make antibodies against infections.
The finding opens the way for the development of vaccines that can work more efficiently and hints at therapies for conditions in which B cells cause harm—such as the autoimmune disease lupus erythymatosus, severe allergies, and B-cell lymphomas.

The discovery reveals that B cells produce special proteins to maintain themselves in a particular functional “class,” even as they lie dormant in the memory-cell state, awaiting a new infection. The class of a B cell determines how its antibodies marshal other components of immunity, and thus how well they can remove a certain type of threat, say bacteria on the skin versus intestinal parasites.
“This is a real breakthrough, in the sense that we now have a much better understanding of how B cell class is regulated, and how we might target that regulatory process in vaccine and drug design,” said Michael McHeyzer-Williams, a Scripps Research professor who was the principal investigator for the study, published in Nature Immunology’s advance online edition on May 6, 2012.

Specialized Infection Fighters

Young, “naïve” B cells begin their careers as infection fighters when they are exposed, in the right way, to pieces of an invading microbe that happen to match their main receptor (the B cell receptor, or BCR). Some then become plasma B cells, and slowly ramp up the active production of antibodies. Others instead become memory B cells, which can lie in wait for years, primed to respond very rapidly and nip in the bud any reinfection.
Either way, as B cells move out of the naïve state, helper T cells secrete chemical signals that typically force the B cells into particular classes. IgG-class B cells are the most common in humans, and are broadly effective against viruses and bacteria. IgA-class B cells are predominantly found on mucosal surfaces such as in the throat and intestines. IgE-class cells and their antibodies protect against intestinal worms and other parasites. Some B cells stay in the default IgM class. The class of a B cell is marked by the type of “stem” it has on its Y-shaped antibodies; this stem, or effector, can mobilize other elements of the immune system, such as inflammatory chemicals, when the antibody binds to an invader.

It had been long assumed that the switching of a B cell to a particular class is the result of a one-time signaling event. “The idea was that the signals that produce this switch don’t persist in B memory cells, for example,” said Nathaniel Wang, a graduate student in the Scripps Research Kellogg School of Science and Technology working in the McHeyzer-Williams laboratory who was first author of the new study.

Testing Assumptions

In the study, Wang, McHeyzer-Williams, and their colleagues tried to determine whether that assumption is true. They knew, for example, that when T cells cause naïve B cells to switch to the IgG2a class, a potent antiviral class, they do so by inducing the production in B cells of a particular protein called T-bet. To clarify T-bet’s role, the researchers engineered transgenic mice whose B cells lack the protein.

Without T-bet, they found, the mouse B cells could not be switched to the IgG2a class, even when presented with all the normal stimuli, and even though other IgG classes could be produced normally—or even in higher amounts. Even more surprisingly, in existing IgG2a memory B cells, the abrupt knockdown of T-bet levels caused the cells to lose their ability to respond to a new infection. In fact, most of the T-bet-deprived memory B cells became undetectable within a few days.
“T-bet turns out to be the central molecule that enforces the IgG2a class in B cells, and if its production stops in IgG2a memory cells, they become dysfunctional and die,” Wang said.

The finding that T-bet has this all-important, ongoing function in IgG2a memory cells suggested that other proteins play analogous roles in other classes of memory B cell. Wang therefore turned to memory B cells of the IgA class, and, with a similar set of experiments, showed that these memory B cells depend on the transcription factor RORα. “It essentially does for IgA memory cells what T-bet does for IgG2a memory cells,” said Wang.

Implications for Science and Medicine

Wang and McHeyzer-Williams and their colleagues are now searching for the proteins that keep other memory B cells healthy and in their classes. But already the work has clarified how memory B cells work. “Until now we haven’t really had a good conceptual framework for the development and maintenance of these cells,” McHeyzer-Williams said.

The findings clearly also have implications for medicine. By supplying a particular class-enforcement protein at the same time that it exposes B cells to microbial proteins, a vaccine could induce a long-term immunity that is heavily weighted towards a desired antibody class. “If you’re designing a vaccine for certain types of virus, for example, you would like to have lots of IgG2a and IgA memory cells,” said McHeyzer-Williams. “So the goal would be to design a chemical adjuvant for the vaccine that drives B cells into those classes.”

Similarly, therapies that knock down class-enforcement signals such as T-bet could usefully reduce or eliminate memory B cells in certain classes. “Some autoimmune, allergic and lymphoma conditions are driven by B cells of a particular class, for example IgE cells in allergies,” said McHeyzer-Williams. “Being able to target just that class of B cell would be an obvious advantage over existing therapies, such as steroids, that knock down large parts of the immune system.”

Other contributors to the paper, “Divergent Transcriptional Programming of Class-Specific B Cell Memory by T-bet and RORα,” were Louise J. McHeyzer-Williams and Shinji L. Okitsu of the McHeyzer-Williams lab; Thomas P. Burris of the Jupiter, Florida campus of Scripps Research, who provided crucial reagents for manipulating RORα levels; and Steven L. Reiner of Columbia University’s College of Physicians and Surgeons, who supplied transgenic mice.

Nathaniel Wang is a CTSA TL-1 scholar in association with the Scripps Translational Science Institute (STSI).

Professor McHeyzer-Williams’s research is funded in part by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>