Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show 'swamp gas' protects blood vessels from complications of diabetes

03.08.2011
Hydrogen sulfide is a foul-smelling gas with an odor resembling that of rotten eggs. Sometimes called "swamp gas," this toxic substance is generally associated with decaying vegetation, sewers and noxious industrial emissions.

And — as odd as it may seem — it also plays a critical role in protecting blood vessels from the complications of diabetes, according to a new study from the University of Texas Medical Branch at Galveston.

In the last few years, work from several laboratories has shown that hydrogen sulfide is produced by the body in small amounts, and that this gas plays important roles in the circulatory system. In their new paper, published in the online early edition of the Proceedings of the National Academy of Sciences, the UTMB researchers describe experiments with human endothelial cells (cells from the innermost layer of blood vessels) and diabetic rats that demonstrate the importance of hydrogen sulfide levels in determining whether diabetes will lead to blood vessel complications.

Dr. Szabo's team started by exposing endothelial cells to sugar at a concentration that mimicked a level found in the blood vessels of someone with diabetes. "Upon exposure to such high sugar levels, the cells started to produce increasing amounts of highly reactive toxic free radicals, and as a consequence, they began to die," said Dr. Csaba Szabo, a UTMB professor and the paper's lead author. "Low hydrogen sulfide levels accelerated this process, while constant replacement of hydrogen sulfide protected the cells against the toxic effects of high sugar."

The researchers went on to show that diabetic rats have lower levels of hydrogen sulfide in their circulatory systems than other animals. Furthermore, the team showed that treating diabetic rats for a month with hydrogen sulfide improved the function of their blood vessels.

"The loss of endothelial cell function in diabetes is a first step that leads to many complications, such as eye disease, heart disease, kidney disease, foot disease and others," Szabo said. "The observation that hydrogen sulfide can control an early checkpoint in all of these processes may open the door for new therapies."

The National Institutes of Health, the Juvenile Diabetes Foundation and the Shriners Hospital for Children supported this research.

ABOUT UTMB Health: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB Health is a component of the University of Texas System and a member of the Texas Medical Center.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144
www.utmb.edu

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>