Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show 'swamp gas' protects blood vessels from complications of diabetes

03.08.2011
Hydrogen sulfide is a foul-smelling gas with an odor resembling that of rotten eggs. Sometimes called "swamp gas," this toxic substance is generally associated with decaying vegetation, sewers and noxious industrial emissions.

And — as odd as it may seem — it also plays a critical role in protecting blood vessels from the complications of diabetes, according to a new study from the University of Texas Medical Branch at Galveston.

In the last few years, work from several laboratories has shown that hydrogen sulfide is produced by the body in small amounts, and that this gas plays important roles in the circulatory system. In their new paper, published in the online early edition of the Proceedings of the National Academy of Sciences, the UTMB researchers describe experiments with human endothelial cells (cells from the innermost layer of blood vessels) and diabetic rats that demonstrate the importance of hydrogen sulfide levels in determining whether diabetes will lead to blood vessel complications.

Dr. Szabo's team started by exposing endothelial cells to sugar at a concentration that mimicked a level found in the blood vessels of someone with diabetes. "Upon exposure to such high sugar levels, the cells started to produce increasing amounts of highly reactive toxic free radicals, and as a consequence, they began to die," said Dr. Csaba Szabo, a UTMB professor and the paper's lead author. "Low hydrogen sulfide levels accelerated this process, while constant replacement of hydrogen sulfide protected the cells against the toxic effects of high sugar."

The researchers went on to show that diabetic rats have lower levels of hydrogen sulfide in their circulatory systems than other animals. Furthermore, the team showed that treating diabetic rats for a month with hydrogen sulfide improved the function of their blood vessels.

"The loss of endothelial cell function in diabetes is a first step that leads to many complications, such as eye disease, heart disease, kidney disease, foot disease and others," Szabo said. "The observation that hydrogen sulfide can control an early checkpoint in all of these processes may open the door for new therapies."

The National Institutes of Health, the Juvenile Diabetes Foundation and the Shriners Hospital for Children supported this research.

ABOUT UTMB Health: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB Health is a component of the University of Texas System and a member of the Texas Medical Center.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144
www.utmb.edu

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>