Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show 'swamp gas' protects blood vessels from complications of diabetes

03.08.2011
Hydrogen sulfide is a foul-smelling gas with an odor resembling that of rotten eggs. Sometimes called "swamp gas," this toxic substance is generally associated with decaying vegetation, sewers and noxious industrial emissions.

And — as odd as it may seem — it also plays a critical role in protecting blood vessels from the complications of diabetes, according to a new study from the University of Texas Medical Branch at Galveston.

In the last few years, work from several laboratories has shown that hydrogen sulfide is produced by the body in small amounts, and that this gas plays important roles in the circulatory system. In their new paper, published in the online early edition of the Proceedings of the National Academy of Sciences, the UTMB researchers describe experiments with human endothelial cells (cells from the innermost layer of blood vessels) and diabetic rats that demonstrate the importance of hydrogen sulfide levels in determining whether diabetes will lead to blood vessel complications.

Dr. Szabo's team started by exposing endothelial cells to sugar at a concentration that mimicked a level found in the blood vessels of someone with diabetes. "Upon exposure to such high sugar levels, the cells started to produce increasing amounts of highly reactive toxic free radicals, and as a consequence, they began to die," said Dr. Csaba Szabo, a UTMB professor and the paper's lead author. "Low hydrogen sulfide levels accelerated this process, while constant replacement of hydrogen sulfide protected the cells against the toxic effects of high sugar."

The researchers went on to show that diabetic rats have lower levels of hydrogen sulfide in their circulatory systems than other animals. Furthermore, the team showed that treating diabetic rats for a month with hydrogen sulfide improved the function of their blood vessels.

"The loss of endothelial cell function in diabetes is a first step that leads to many complications, such as eye disease, heart disease, kidney disease, foot disease and others," Szabo said. "The observation that hydrogen sulfide can control an early checkpoint in all of these processes may open the door for new therapies."

The National Institutes of Health, the Juvenile Diabetes Foundation and the Shriners Hospital for Children supported this research.

ABOUT UTMB Health: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB Health is a component of the University of Texas System and a member of the Texas Medical Center.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144
www.utmb.edu

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>