Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal malaria parasites' tactics for outwitting our immune systems

01.12.2009
Malaria parasites are able to disguise themselves to avoid the host's immune system, according to research funded by the Wellcome Trust and published today in the journal Proceedings of the National Academy of Sciences.

Malaria is one of the world's biggest killers, responsible for over a million deaths every year, mainly in children and pregnant women in Africa and South-east Asia. It is caused by the malaria parasite, which is injected into the bloodstream from the salivary glands of infected mosquitoes. There are a number of different species of parasite, but the deadliest is the Plasmodium falciparum parasite, which accounts for 90 per cent of deaths from malaria.

The malaria parasite infects healthy red blood cells, where it reproduces. The P. falciparum parasite generates a family of molecules, known as PfEMP1, that are inserted into the surface of the infected red blood cells. The cells become sticky and adhere to the walls of blood vessels in tissues such as the brain. This prevents the cells being flushed through the spleen, where the parasites would be destroyed by the body's immune system, but also restricts blood supply to vital organs.

Symptoms can differ greatly between young and older children depending on previous exposure to the parasite. In young children, the disease can be extremely serious and potentially fatal if untreated; older children and adults who have grown up in endemic areas are resistant to severe malaria but rarely develop the ability to rid their bodies of the parasite.

Each parasite has 'recipes' for around sixty different types of PfEMP1 molecule written into its genes. However, the exact recipes differ from parasite to parasite, so every new infection may carry a set of molecules that the immune system has not previously encountered. This has meant that in the past, researchers have ruled out the molecules as vaccine candidates. However there appear to be at least two main classes of PfEMP1 types within every parasite, suggesting different broad tactical approaches to infecting the host. The most efficient tactic or combination of tactics to use may depend on the host's immunity.

Now, Dr George Warimwe and colleagues from the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme and the Wellcome Trust Sanger Institute, have shown that the parasites adapt their molecules depending on which antibodies it encounters in the host's immune response. They have also found evidence to suggest that there may be a limit to the number of molecular types that are actually associated with severe disease.

"The malaria parasite is very complex, so our immune system mounts many different responses, some more effective than others and many not effective at all," explains Dr Peter Bull from the KEMRI-Wellcome Trust Programme and the University of Oxford, who led the research. "We know that our bodies have great difficulty in completely clearing infections, which begs the question: how does the parasite manage to outwit our immune response? We have shown that, as children begin to develop antibodies to parasites, the malaria parasite changes its tactics to adapt to our defences."

The researchers at the KEMRI-Wellcome Trust Programme studied malaria parasites in blood samples from 217 Kenyan children with malaria. They found that a group of genes coding for a particular class of PfEMP1 molecule called Cys-2 tended to be switched on when the children had a low immunity to the parasite; as immunity develops, the parasite switches on a different set of genes, effectively disguising it so that immune system cannot clear the infection

Dr Warimwe and colleagues also found an independent association between activity in Cys-2 genes and severe malaria in the children, suggesting that specific forms of the molecule may be more likely to trigger specific disease symptoms. This supports a previous study in Mali which suggested that the same class of PfEMP1 molecule was associated with cerebral malaria.

The findings could suggest a new approach to tackling malaria, in terms of both vaccine development and drug interventions, argues Dr Bull.

"If there exists a limited class of severe disease-causing variants that naturally-exposed children learn to recognise readily, this opens up the possibility of designing a vaccine against severe malaria that mimics an adult's immune response, making the infections less dangerous. But this would still be an enormous task.

"Similarly, if we can establish what the particular class of molecules are doing, then we may be able to develop a drug to modify this function and relieve symptoms of severe disease."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>