Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal malaria parasites' tactics for outwitting our immune systems

01.12.2009
Malaria parasites are able to disguise themselves to avoid the host's immune system, according to research funded by the Wellcome Trust and published today in the journal Proceedings of the National Academy of Sciences.

Malaria is one of the world's biggest killers, responsible for over a million deaths every year, mainly in children and pregnant women in Africa and South-east Asia. It is caused by the malaria parasite, which is injected into the bloodstream from the salivary glands of infected mosquitoes. There are a number of different species of parasite, but the deadliest is the Plasmodium falciparum parasite, which accounts for 90 per cent of deaths from malaria.

The malaria parasite infects healthy red blood cells, where it reproduces. The P. falciparum parasite generates a family of molecules, known as PfEMP1, that are inserted into the surface of the infected red blood cells. The cells become sticky and adhere to the walls of blood vessels in tissues such as the brain. This prevents the cells being flushed through the spleen, where the parasites would be destroyed by the body's immune system, but also restricts blood supply to vital organs.

Symptoms can differ greatly between young and older children depending on previous exposure to the parasite. In young children, the disease can be extremely serious and potentially fatal if untreated; older children and adults who have grown up in endemic areas are resistant to severe malaria but rarely develop the ability to rid their bodies of the parasite.

Each parasite has 'recipes' for around sixty different types of PfEMP1 molecule written into its genes. However, the exact recipes differ from parasite to parasite, so every new infection may carry a set of molecules that the immune system has not previously encountered. This has meant that in the past, researchers have ruled out the molecules as vaccine candidates. However there appear to be at least two main classes of PfEMP1 types within every parasite, suggesting different broad tactical approaches to infecting the host. The most efficient tactic or combination of tactics to use may depend on the host's immunity.

Now, Dr George Warimwe and colleagues from the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme and the Wellcome Trust Sanger Institute, have shown that the parasites adapt their molecules depending on which antibodies it encounters in the host's immune response. They have also found evidence to suggest that there may be a limit to the number of molecular types that are actually associated with severe disease.

"The malaria parasite is very complex, so our immune system mounts many different responses, some more effective than others and many not effective at all," explains Dr Peter Bull from the KEMRI-Wellcome Trust Programme and the University of Oxford, who led the research. "We know that our bodies have great difficulty in completely clearing infections, which begs the question: how does the parasite manage to outwit our immune response? We have shown that, as children begin to develop antibodies to parasites, the malaria parasite changes its tactics to adapt to our defences."

The researchers at the KEMRI-Wellcome Trust Programme studied malaria parasites in blood samples from 217 Kenyan children with malaria. They found that a group of genes coding for a particular class of PfEMP1 molecule called Cys-2 tended to be switched on when the children had a low immunity to the parasite; as immunity develops, the parasite switches on a different set of genes, effectively disguising it so that immune system cannot clear the infection

Dr Warimwe and colleagues also found an independent association between activity in Cys-2 genes and severe malaria in the children, suggesting that specific forms of the molecule may be more likely to trigger specific disease symptoms. This supports a previous study in Mali which suggested that the same class of PfEMP1 molecule was associated with cerebral malaria.

The findings could suggest a new approach to tackling malaria, in terms of both vaccine development and drug interventions, argues Dr Bull.

"If there exists a limited class of severe disease-causing variants that naturally-exposed children learn to recognise readily, this opens up the possibility of designing a vaccine against severe malaria that mimics an adult's immune response, making the infections less dangerous. But this would still be an enormous task.

"Similarly, if we can establish what the particular class of molecules are doing, then we may be able to develop a drug to modify this function and relieve symptoms of severe disease."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>