Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Pry New Information from Disease-Causing, Shellfish-Borne Bacterium

20.08.2010
Researchers at UT Southwestern Medical Center have uncovered a key weapon in the molecular arsenal the infectious bacterium Vibrio parahaemolyticus (V. para) uses to kill cells and cause food poisoning in its human host.

Dr. Kim Orth, associate professor of molecular biology at UT Southwestern, said the new research on the ocean-dwelling bacterium is leading to greater insights into how it causes illness in humans while also providing a potential novel scientific tool for studying general cell biology in the laboratory. Dr. Orth is senior author of the study, which appears in the Aug. 19 issue of Science Express, the advance online version of the journal Science.

Dr. Orth and her team found that the bacterial molecule VPA0450 plucks a group of atoms called a phosphate from a larger molecule in a host cell that is critical to holding the cell together. Without that phosphate, the host-cell membrane fails. The cell loses integrity and is efficiently destroyed during infection.

“From a microbiology point of view, understanding how VPA0450 manipulates a host cell is critical to understanding how V. para causes disease,” said Chris Broberg, a UT Southwestern student in the molecular microbiology graduate program and lead author of the study.

Dr. Orth and her colleagues previously identified two other Vibrio proteins called VopQ and VopS, which also attack host cells via separate mechanisms. She said the new findings reinforce the notion that V. para kills a host cell through the combined efforts of several so-called effector proteins working together rather than through the actions of a single protein.

“In order to understand better the disease this bacterium causes, we need to characterize each effector’s activity, then determine how they work in concert,” Dr. Orth said. “This latest paper puts our field closer to this goal.

“The fact that this important study was led by one of our graduate students attests to UT Southwestern’s highly successful model of training future scientists.”

Most people become infected by V. para by eating raw or undercooked shellfish, particularly oysters, according to the Centers for Disease Control and Prevention. The organism also can cause an infection in the skin when an open wound is exposed to warm sea water.

Dr. Orth’s research on V. para proteins has potential applications in other areas of cell biology. The particular phosphate that VPA0450 removes also is important to other host-cell proteins that control certain communication signals within and between cells, signals related to how cells grow and move, as well as how they maintain their structural integrity. As such, exploiting VPA0450’s unique abilities could prove to be a useful research tool.

“Scientists have the ability to manipulate many cell-signaling pathways,” Dr. Orth said. “VPA0450 could be used as a valuable tool to remove this key phosphate to change membrane signaling in a cell model system, which would then allow us to study these pathways in more detail.”

Other UT Southwestern researchers involved in the study are Dr. Lingling Zhang, postdoctoral researcher in molecular biology; Herman Gonzalez, research technician; and Michelle Laskowski-Arce, postdoctoral researcher.

The research was funded by the National Institutes of Health, the Burroughs Wellcome Fund and The Welch Foundation.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

Amanda Siegfried | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>