Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Pry New Information from Disease-Causing, Shellfish-Borne Bacterium

20.08.2010
Researchers at UT Southwestern Medical Center have uncovered a key weapon in the molecular arsenal the infectious bacterium Vibrio parahaemolyticus (V. para) uses to kill cells and cause food poisoning in its human host.

Dr. Kim Orth, associate professor of molecular biology at UT Southwestern, said the new research on the ocean-dwelling bacterium is leading to greater insights into how it causes illness in humans while also providing a potential novel scientific tool for studying general cell biology in the laboratory. Dr. Orth is senior author of the study, which appears in the Aug. 19 issue of Science Express, the advance online version of the journal Science.

Dr. Orth and her team found that the bacterial molecule VPA0450 plucks a group of atoms called a phosphate from a larger molecule in a host cell that is critical to holding the cell together. Without that phosphate, the host-cell membrane fails. The cell loses integrity and is efficiently destroyed during infection.

“From a microbiology point of view, understanding how VPA0450 manipulates a host cell is critical to understanding how V. para causes disease,” said Chris Broberg, a UT Southwestern student in the molecular microbiology graduate program and lead author of the study.

Dr. Orth and her colleagues previously identified two other Vibrio proteins called VopQ and VopS, which also attack host cells via separate mechanisms. She said the new findings reinforce the notion that V. para kills a host cell through the combined efforts of several so-called effector proteins working together rather than through the actions of a single protein.

“In order to understand better the disease this bacterium causes, we need to characterize each effector’s activity, then determine how they work in concert,” Dr. Orth said. “This latest paper puts our field closer to this goal.

“The fact that this important study was led by one of our graduate students attests to UT Southwestern’s highly successful model of training future scientists.”

Most people become infected by V. para by eating raw or undercooked shellfish, particularly oysters, according to the Centers for Disease Control and Prevention. The organism also can cause an infection in the skin when an open wound is exposed to warm sea water.

Dr. Orth’s research on V. para proteins has potential applications in other areas of cell biology. The particular phosphate that VPA0450 removes also is important to other host-cell proteins that control certain communication signals within and between cells, signals related to how cells grow and move, as well as how they maintain their structural integrity. As such, exploiting VPA0450’s unique abilities could prove to be a useful research tool.

“Scientists have the ability to manipulate many cell-signaling pathways,” Dr. Orth said. “VPA0450 could be used as a valuable tool to remove this key phosphate to change membrane signaling in a cell model system, which would then allow us to study these pathways in more detail.”

Other UT Southwestern researchers involved in the study are Dr. Lingling Zhang, postdoctoral researcher in molecular biology; Herman Gonzalez, research technician; and Michelle Laskowski-Arce, postdoctoral researcher.

The research was funded by the National Institutes of Health, the Burroughs Wellcome Fund and The Welch Foundation.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

Amanda Siegfried | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>