Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists produce illusion of body-swapping

04.12.2008
Cognitive neuroscientists at the Swedish medical university Karolinska Institutet (KI) have succeeded in making subjects perceive the bodies of mannequins and other people as their own. In one of the experiments, subjects swapped bodies with other people and shook hands with themselves without illusion being broken.

"This shows how easy it is to change the brain's perception of the physical self," says Henrik Ehrsson, who led the project. "By manipulating sensory impressions, it's possible to fool the self not only out of its body but into other bodies too."

In the first experiment, the head of a shop dummy was fitted with two cameras connected to two small screens placed in front of the subjects' eyes, so that they saw what the dummy "saw". When the dummy's camera eyes and a subject's head was directed downwards, the subject saw the dummy's body where he/she would normally have seen his/her own.

The illusion of body-swapping was created when the scientist touched the stomach of both with two sticks. The subject could then see that the mannequin's stomach was being touched while feeling (but not seeing) a similar sensation on his/her own stomach. As a result, the subject developed a powerful sensation that the mannequin's body was his/her own.

In another experiment, the camera was mounted onto another person's head. When this person and the subject turned towards each other to shake hands, the subject perceived the camera-wearer's body as his/her own.

"The subjects see themselves shaking hands from the outside, but experience it as another person," says Valeria Petkova, who co-conducted the study with Dr Ehrsson. "The sensory impression from the hand-shake is perceived as though coming from the new body, rather than the subject's own."

The strength of the illusion was confirmed by the subjects' exhibiting stress reactions when a knife was held to the camera wearer's arm but not when it was held to their own.

The illusion also worked even when the two people differed in appearance or were of different sexes. However, it was not possible to fool the self into identifying with a non-humanoid object, such as a chair or a large block.

The object of the projects was to learn more about how the brain constructs an internal image of the body. The knowledge that the sense of corporal identification/self-perception can be manipulated to make people believe that they have a new body is of potential practical use in virtual reality applications and robot technology.

Publication: "If I were you: perceptual illusion of body swapping."

Valeria I. Petkova & Henrik Ehrsson, PLoS ONE, 3 December 2008.

Photo gallery: http://ki.se/pressimages

For further information, please contact:
Henrik Ehrsson, MD, PhD
Department of Neuroscience
Tel: +46(0)8-524 87231
Email: henrik.ehrsson@ki.se
Valeria Petkova, postgraduate
Department of Neuroscience
Tel: +46(0)8-517 761 13
Email: Valeria.Petkova@ki.se
Press Officer Sabina Bossi
Tel: +46 (0)8-524 860 66 (redirected to mobile)
Email: Sabina.bossi@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Sabina Bossi | idw
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>