Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists produce illusion of body-swapping

04.12.2008
Cognitive neuroscientists at the Swedish medical university Karolinska Institutet (KI) have succeeded in making subjects perceive the bodies of mannequins and other people as their own. In one of the experiments, subjects swapped bodies with other people and shook hands with themselves without illusion being broken.

"This shows how easy it is to change the brain's perception of the physical self," says Henrik Ehrsson, who led the project. "By manipulating sensory impressions, it's possible to fool the self not only out of its body but into other bodies too."

In the first experiment, the head of a shop dummy was fitted with two cameras connected to two small screens placed in front of the subjects' eyes, so that they saw what the dummy "saw". When the dummy's camera eyes and a subject's head was directed downwards, the subject saw the dummy's body where he/she would normally have seen his/her own.

The illusion of body-swapping was created when the scientist touched the stomach of both with two sticks. The subject could then see that the mannequin's stomach was being touched while feeling (but not seeing) a similar sensation on his/her own stomach. As a result, the subject developed a powerful sensation that the mannequin's body was his/her own.

In another experiment, the camera was mounted onto another person's head. When this person and the subject turned towards each other to shake hands, the subject perceived the camera-wearer's body as his/her own.

"The subjects see themselves shaking hands from the outside, but experience it as another person," says Valeria Petkova, who co-conducted the study with Dr Ehrsson. "The sensory impression from the hand-shake is perceived as though coming from the new body, rather than the subject's own."

The strength of the illusion was confirmed by the subjects' exhibiting stress reactions when a knife was held to the camera wearer's arm but not when it was held to their own.

The illusion also worked even when the two people differed in appearance or were of different sexes. However, it was not possible to fool the self into identifying with a non-humanoid object, such as a chair or a large block.

The object of the projects was to learn more about how the brain constructs an internal image of the body. The knowledge that the sense of corporal identification/self-perception can be manipulated to make people believe that they have a new body is of potential practical use in virtual reality applications and robot technology.

Publication: "If I were you: perceptual illusion of body swapping."

Valeria I. Petkova & Henrik Ehrsson, PLoS ONE, 3 December 2008.

Photo gallery: http://ki.se/pressimages

For further information, please contact:
Henrik Ehrsson, MD, PhD
Department of Neuroscience
Tel: +46(0)8-524 87231
Email: henrik.ehrsson@ki.se
Valeria Petkova, postgraduate
Department of Neuroscience
Tel: +46(0)8-517 761 13
Email: Valeria.Petkova@ki.se
Press Officer Sabina Bossi
Tel: +46 (0)8-524 860 66 (redirected to mobile)
Email: Sabina.bossi@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Sabina Bossi | idw
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>