Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists produce illusion of body-swapping

04.12.2008
Cognitive neuroscientists at the Swedish medical university Karolinska Institutet (KI) have succeeded in making subjects perceive the bodies of mannequins and other people as their own. In one of the experiments, subjects swapped bodies with other people and shook hands with themselves without illusion being broken.

"This shows how easy it is to change the brain's perception of the physical self," says Henrik Ehrsson, who led the project. "By manipulating sensory impressions, it's possible to fool the self not only out of its body but into other bodies too."

In the first experiment, the head of a shop dummy was fitted with two cameras connected to two small screens placed in front of the subjects' eyes, so that they saw what the dummy "saw". When the dummy's camera eyes and a subject's head was directed downwards, the subject saw the dummy's body where he/she would normally have seen his/her own.

The illusion of body-swapping was created when the scientist touched the stomach of both with two sticks. The subject could then see that the mannequin's stomach was being touched while feeling (but not seeing) a similar sensation on his/her own stomach. As a result, the subject developed a powerful sensation that the mannequin's body was his/her own.

In another experiment, the camera was mounted onto another person's head. When this person and the subject turned towards each other to shake hands, the subject perceived the camera-wearer's body as his/her own.

"The subjects see themselves shaking hands from the outside, but experience it as another person," says Valeria Petkova, who co-conducted the study with Dr Ehrsson. "The sensory impression from the hand-shake is perceived as though coming from the new body, rather than the subject's own."

The strength of the illusion was confirmed by the subjects' exhibiting stress reactions when a knife was held to the camera wearer's arm but not when it was held to their own.

The illusion also worked even when the two people differed in appearance or were of different sexes. However, it was not possible to fool the self into identifying with a non-humanoid object, such as a chair or a large block.

The object of the projects was to learn more about how the brain constructs an internal image of the body. The knowledge that the sense of corporal identification/self-perception can be manipulated to make people believe that they have a new body is of potential practical use in virtual reality applications and robot technology.

Publication: "If I were you: perceptual illusion of body swapping."

Valeria I. Petkova & Henrik Ehrsson, PLoS ONE, 3 December 2008.

Photo gallery: http://ki.se/pressimages

For further information, please contact:
Henrik Ehrsson, MD, PhD
Department of Neuroscience
Tel: +46(0)8-524 87231
Email: henrik.ehrsson@ki.se
Valeria Petkova, postgraduate
Department of Neuroscience
Tel: +46(0)8-517 761 13
Email: Valeria.Petkova@ki.se
Press Officer Sabina Bossi
Tel: +46 (0)8-524 860 66 (redirected to mobile)
Email: Sabina.bossi@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Sabina Bossi | idw
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>