Scientists pinpoint a new molecular mechanism tied to pancreatic cancer

In the EMBO Molecular Medicine journal, the investigators report that they have identified a new molecular mechanism that contributes to the spread of malignant tumors in the pancreas. The hope is that drugs could one day be developed to block this pathway.

Most people with pancreatic cancer die within one to two years of diagnosis and it is expected to claim 38,460 lives in the United States in 2013. There are currently no effective tests for early detection and no effective therapies for the fast-spreading form.

The study focused on the previously established link between zinc and pancreatic cancer and sought to identify a molecular mechanism responsible for the elevated levels found in human and animal cells. Zinc is an essential trace element and small amounts are important for human health.

“We were the first to show that zinc transporter ZIP4 was a marker for pancreatic cancer,” said Min Li, Ph.D., the study’s senior author and associate professor and director of the Cancer Research Program in the Vivian L. Smith Department of Neurosurgery at the UTHealth Medical School. “We knew there was a link but we didn’t know what it was.”

Li is on the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston, which is a joint venture of UTHealth and The University of Texas MD Anderson Cancer Center.

Zinc levels are regulated by ZIP4, which acts as a master switch, and the researchers designed experiments to determine what happens when the switch is flipped on, Li said.

In an animal model of pancreatic cancer, the scientists observed how the initiation of ZIP4 triggered the activation of two downstream genes, which in turn accounts for the increased tumor growth. Scientists describe this as a signaling cascade.

“Pancreatic cancer is among the worst of all cancers. It is imperative to define the mechanism of this deadly disease. We have recently demonstrated a novel biological role for the zinc transporter ZIP4 in pancreatic cancer; however, the molecular pathway controlling this phenomenon remains elusive. This study provides a comprehensive mechanism for ZIP4-mediated pancreatic cancer growth involving the activation of a transcription factor CREB and an oncogenic miR-373, and reduction in key tumor suppressor genes,” said Yuqing Zhang, Ph.D., co-first author of the study.

Jingxuan Yang, Ph.D., co-first author and research scientist at the UTHealth Medical School, said, “Our findings in this study define a novel signaling axis promoting pancreatic cancer growth, providing potential mechanistic insights on how a zinc transporter functions in cancer cells and may have broader implications as abnormal zinc concentration in the cells plays an important role in many other diseases.”

“The results we reported in this study may help the design of future therapeutic strategies targeting the zinc transporter and microRNA pathways to treat pancreatic cancer,” said Xiaobo Cui, M.D., Ph.D., study co-first author and postdoctoral research fellow at the UTHealth Medical School.

Co-authors include: Yong Chen, Ph.D., Vivian F. Zhu, and John P. Hagan, Ph.D., of UTHealth; Huamin Wang, M.D., Ph.D., Paul Chiao, Ph.D., and Craig D. Logsdon, Ph.D., of The University of Texas MD Anderson Cancer Center; Sally E. Hodges, William E. Fisher, M.D., F. Charles Brunicardi, M.D., Changyi Chen, M.D., Ph.D., and Qizhi Yao, M.D., Ph.D., of Baylor College of Medicine; Martin E. Fernandez-Zapico, M.D., of the Mayo Clinic; Xianjun Yu, M.D., Ph.D., of Fudan University in Shanghai, China; and Jing Fang, Ph.D., of the Chinese Academy of Sciences in Shanghai.

The study titled “A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth” received support from National Institutes of Health Grants (R01CA138701, R21CA133604), and the William and Ella Owens Medical Research Foundation.

Rob Cahill
Media Hotline: 713-500-3030

Media Contact

Robert Cahill EurekAlert!

More Information:

http://www.uth.tmc.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors