Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists pinpoint a new molecular mechanism tied to pancreatic cancer

23.08.2013
New research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) and Baylor College of Medicine could aid efforts to diagnose and treat one of the most lethal and hard-to-treat types of cancer.

In the EMBO Molecular Medicine journal, the investigators report that they have identified a new molecular mechanism that contributes to the spread of malignant tumors in the pancreas. The hope is that drugs could one day be developed to block this pathway.

Most people with pancreatic cancer die within one to two years of diagnosis and it is expected to claim 38,460 lives in the United States in 2013. There are currently no effective tests for early detection and no effective therapies for the fast-spreading form.

The study focused on the previously established link between zinc and pancreatic cancer and sought to identify a molecular mechanism responsible for the elevated levels found in human and animal cells. Zinc is an essential trace element and small amounts are important for human health.

“We were the first to show that zinc transporter ZIP4 was a marker for pancreatic cancer,” said Min Li, Ph.D., the study’s senior author and associate professor and director of the Cancer Research Program in the Vivian L. Smith Department of Neurosurgery at the UTHealth Medical School. “We knew there was a link but we didn’t know what it was.”

Li is on the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston, which is a joint venture of UTHealth and The University of Texas MD Anderson Cancer Center.

Zinc levels are regulated by ZIP4, which acts as a master switch, and the researchers designed experiments to determine what happens when the switch is flipped on, Li said.

In an animal model of pancreatic cancer, the scientists observed how the initiation of ZIP4 triggered the activation of two downstream genes, which in turn accounts for the increased tumor growth. Scientists describe this as a signaling cascade.

“Pancreatic cancer is among the worst of all cancers. It is imperative to define the mechanism of this deadly disease. We have recently demonstrated a novel biological role for the zinc transporter ZIP4 in pancreatic cancer; however, the molecular pathway controlling this phenomenon remains elusive. This study provides a comprehensive mechanism for ZIP4-mediated pancreatic cancer growth involving the activation of a transcription factor CREB and an oncogenic miR-373, and reduction in key tumor suppressor genes,” said Yuqing Zhang, Ph.D., co-first author of the study.

Jingxuan Yang, Ph.D., co-first author and research scientist at the UTHealth Medical School, said, “Our findings in this study define a novel signaling axis promoting pancreatic cancer growth, providing potential mechanistic insights on how a zinc transporter functions in cancer cells and may have broader implications as abnormal zinc concentration in the cells plays an important role in many other diseases.”

“The results we reported in this study may help the design of future therapeutic strategies targeting the zinc transporter and microRNA pathways to treat pancreatic cancer,” said Xiaobo Cui, M.D., Ph.D., study co-first author and postdoctoral research fellow at the UTHealth Medical School.

Co-authors include: Yong Chen, Ph.D., Vivian F. Zhu, and John P. Hagan, Ph.D., of UTHealth; Huamin Wang, M.D., Ph.D., Paul Chiao, Ph.D., and Craig D. Logsdon, Ph.D., of The University of Texas MD Anderson Cancer Center; Sally E. Hodges, William E. Fisher, M.D., F. Charles Brunicardi, M.D., Changyi Chen, M.D., Ph.D., and Qizhi Yao, M.D., Ph.D., of Baylor College of Medicine; Martin E. Fernandez-Zapico, M.D., of the Mayo Clinic; Xianjun Yu, M.D., Ph.D., of Fudan University in Shanghai, China; and Jing Fang, Ph.D., of the Chinese Academy of Sciences in Shanghai.

The study titled “A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth” received support from National Institutes of Health Grants (R01CA138701, R21CA133604), and the William and Ella Owens Medical Research Foundation.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>