Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify for the first time the genes that cause blindness produced by corneal oedema

19.09.2008
Scientists of the University of Granada (Spain) and the San Cecilio Teaching Hospital (Granada) have determined for the first time the causes for the blindness produced by corneal oedema and have identified the genes which cause it.

The research group of Tissue Engineering of the UGR and the San Cecilio University Hospital, who has recently constructed the first complete artificial cornea, has established in a research work which has just been published in the journal ‘Experimental Eye Research’ new findings related to blindness caused by corneal oedema originated by the alteration of the cell barrier of corneal endothelium. When the endothelial cell barrier is unharmed, the cornea remains dehydrated and transparent.

An oedema is a swelling caused by the accumulation of liquid in the tissues of the human body, including cornea. The researchers of Granada have proved that the alteration of the mechanisms that regulate the volume of endothelial cells and their content in ions is the cause for which the endothelial barrier stops being effective in the control of corneal transparency.

Ion concentration

The research work has experimentally established the volume and concentration of ions in cells when they make up the endothelial barrier and when they stop forming it. If, due to a traumatism, cataract surgery, ageing, etc., the barrier of endothelial cells breaks, dispersed cells increase their volume and content in ions, potassium and chlorine. The goal of these changes is to repair the endothelial barrier, prevent corneal oedema and, therefore, the loss of transparency and the resulting blindness. The research carried out in the University of Granada has also determined the genes involved in the control of such process.

Such recent findings suggest new treatments for corneal oedema. The scientists explain that maybe in the not too distant future it will be possible to use eye drops which provide the ions involved or even the possibility of modifying the affected genes by means of gene therapy, which could mend or palliate some of these alterations.

The authors of the work are Professors Miguel Alaminos, Miguel González Andrades, José Ignacio Muñoz Ávila, Ingrid Garzón, Mª Carmen Sánchez Quevedo and Antonio Campos.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=547

Further reports about: blindness corneal endothelium corneal oedema endothelial cells genes

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>