Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify possible therapy target for aggressive cancer

02.12.2009
UT Southwestern Medical Center researchers have found that a naturally occurring protein — transforming growth factor beta1 (TGF-ß1) — which normally suppresses the growth of cancer cells, causes a rebound effect after a prolonged exposure. Cancer cells go into overdrive and become even more aggressive and likely to spread, the researchers report.
The mechanism for this reversal is unknown, but UT Southwestern researchers and their colleagues in Indiana suspect that cancerous cells activate a defense mechanism in response to the lethal protein. This mechanism turns on a cascade of cancer-promoting genes.

But clinicians may be able to exploit this rebound for better treatments, said Dr. David Boothman, co-senior author of the study, available online today and appearing in the January issue of The Journal of Clinical Investigation.

“These genetic changes would start prior to metastases, so if we detect them early, we might be able to tailor treatment in anticipation of a more aggressive cancer,” said Dr. Boothman, a professor of radiation oncology and pharmacology and associate director of translational research in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

The study was conducted on cells from mice and in samples from women with metastatic breast cancer.

TGF-ß1 controls many cellular functions, including cell growth, cell proliferation and natural cell death. It also can act to suppress tumors and prevent cancers from spreading.

The researchers, including co-senior collaborator Dr. Lindsey Mayo from the Indiana University School of Medicine, examined a cascade of biochemical reactions in cells exposed to TGF-ß1. They suspected that prolonged exposure would turn on a particular cancer-causing gene, which in turn, activates other cancer-supporting reactions.

In tissue from women with metastatic breast cancer, 60 percent of the patients showed both TGF-ß1 action and high levels of the cancer-causing gene.

The team also looked at nutlin3, a protein that blocks the action of the cancer-causing gene. They found that nutlin3 blocks the cancer-boosting effects of long-term TGF-ß1 exposure, preventing metastasis and killing cancer cells. Further research will be needed to determine whether nutlin3 might be worth developing further as an anti-cancer drug, Dr. Boothman said.

In other studies, UT Southwestern researchers found similar effects in cells from colon and non-small cell lung cancers.

Other UT Southwestern researchers involved in the study included Dr. Shinako Araki, postdoctoral fellow in the Simmons Comprehensive Cancer Center; Dr. Xian-Jin Xie, associate professor of clinical sciences and in the Simmons Comprehensive Cancer Center.

The study was supported by grants from the Department of Energy and the National Cancer Institute.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services in cancer at UT Southwestern.

Media Contact: Connie Piloto
214-648-3404
conniepiloto@utsouthwestern.edu

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>