Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify possible therapy target for aggressive cancer

02.12.2009
UT Southwestern Medical Center researchers have found that a naturally occurring protein — transforming growth factor beta1 (TGF-ß1) — which normally suppresses the growth of cancer cells, causes a rebound effect after a prolonged exposure. Cancer cells go into overdrive and become even more aggressive and likely to spread, the researchers report.
The mechanism for this reversal is unknown, but UT Southwestern researchers and their colleagues in Indiana suspect that cancerous cells activate a defense mechanism in response to the lethal protein. This mechanism turns on a cascade of cancer-promoting genes.

But clinicians may be able to exploit this rebound for better treatments, said Dr. David Boothman, co-senior author of the study, available online today and appearing in the January issue of The Journal of Clinical Investigation.

“These genetic changes would start prior to metastases, so if we detect them early, we might be able to tailor treatment in anticipation of a more aggressive cancer,” said Dr. Boothman, a professor of radiation oncology and pharmacology and associate director of translational research in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

The study was conducted on cells from mice and in samples from women with metastatic breast cancer.

TGF-ß1 controls many cellular functions, including cell growth, cell proliferation and natural cell death. It also can act to suppress tumors and prevent cancers from spreading.

The researchers, including co-senior collaborator Dr. Lindsey Mayo from the Indiana University School of Medicine, examined a cascade of biochemical reactions in cells exposed to TGF-ß1. They suspected that prolonged exposure would turn on a particular cancer-causing gene, which in turn, activates other cancer-supporting reactions.

In tissue from women with metastatic breast cancer, 60 percent of the patients showed both TGF-ß1 action and high levels of the cancer-causing gene.

The team also looked at nutlin3, a protein that blocks the action of the cancer-causing gene. They found that nutlin3 blocks the cancer-boosting effects of long-term TGF-ß1 exposure, preventing metastasis and killing cancer cells. Further research will be needed to determine whether nutlin3 might be worth developing further as an anti-cancer drug, Dr. Boothman said.

In other studies, UT Southwestern researchers found similar effects in cells from colon and non-small cell lung cancers.

Other UT Southwestern researchers involved in the study included Dr. Shinako Araki, postdoctoral fellow in the Simmons Comprehensive Cancer Center; Dr. Xian-Jin Xie, associate professor of clinical sciences and in the Simmons Comprehensive Cancer Center.

The study was supported by grants from the Department of Energy and the National Cancer Institute.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services in cancer at UT Southwestern.

Media Contact: Connie Piloto
214-648-3404
conniepiloto@utsouthwestern.edu

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Researchers show p300 protein may suppress leukemia in MDS patients
28.03.2017 | University of Miami Miller School of Medicine

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>