Scientists identify possible therapy target for aggressive cancer

The mechanism for this reversal is unknown, but UT Southwestern researchers and their colleagues in Indiana suspect that cancerous cells activate a defense mechanism in response to the lethal protein. This mechanism turns on a cascade of cancer-promoting genes.

But clinicians may be able to exploit this rebound for better treatments, said Dr. David Boothman, co-senior author of the study, available online today and appearing in the January issue of The Journal of Clinical Investigation.

“These genetic changes would start prior to metastases, so if we detect them early, we might be able to tailor treatment in anticipation of a more aggressive cancer,” said Dr. Boothman, a professor of radiation oncology and pharmacology and associate director of translational research in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

The study was conducted on cells from mice and in samples from women with metastatic breast cancer.

TGF-ß1 controls many cellular functions, including cell growth, cell proliferation and natural cell death. It also can act to suppress tumors and prevent cancers from spreading.

The researchers, including co-senior collaborator Dr. Lindsey Mayo from the Indiana University School of Medicine, examined a cascade of biochemical reactions in cells exposed to TGF-ß1. They suspected that prolonged exposure would turn on a particular cancer-causing gene, which in turn, activates other cancer-supporting reactions.

In tissue from women with metastatic breast cancer, 60 percent of the patients showed both TGF-ß1 action and high levels of the cancer-causing gene.

The team also looked at nutlin3, a protein that blocks the action of the cancer-causing gene. They found that nutlin3 blocks the cancer-boosting effects of long-term TGF-ß1 exposure, preventing metastasis and killing cancer cells. Further research will be needed to determine whether nutlin3 might be worth developing further as an anti-cancer drug, Dr. Boothman said.

In other studies, UT Southwestern researchers found similar effects in cells from colon and non-small cell lung cancers.

Other UT Southwestern researchers involved in the study included Dr. Shinako Araki, postdoctoral fellow in the Simmons Comprehensive Cancer Center; Dr. Xian-Jin Xie, associate professor of clinical sciences and in the Simmons Comprehensive Cancer Center.

The study was supported by grants from the Department of Energy and the National Cancer Institute.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services in cancer at UT Southwestern.

Media Contact: Connie Piloto
214-648-3404
conniepiloto@utsouthwestern.edu

Media Contact

Connie Piloto EurekAlert!

More Information:

http://www.utsouthwestern.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors