Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new role for lung epithelial cells in sensing allergens in the air

01.04.2009
WHAT: Researchers at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and at Ghent University in Ghent, Belgium, have identified a new role for certain lung cells in the immune response to airborne allergens.

Many foreign substances, called antigens, are inhaled daily, but the lungs have mechanisms that usually prevent people from making unwanted immune responses to these materials.

Sometimes, however, immune responses are generated to these substances, resulting in allergic responses and asthma. Scientists have been working to understand what triggers these undesirable airway responses.

In this new study, conducted in mice, scientists discovered that special sensors called Toll-like receptors (TLRs), which dot the surface of epithelial cells that line the lungs, detect the presence of antigens and produce signals that activate immune cells. The researchers observed that a particular TLR, TLR4, promoted allergic airway responses to antigen mixtures containing bacterial material or a very common allergen from house dust mites.

Previously, it was unclear whether TLRs on non-immune epithelial cells at mucosal surfaces such as those in the lungs were involved in antigen sensing, or if it was TLRs found on immune cells in these areas that were critical to these allergic responses. The research team observed that TLR4 on airway epithelial cells, not on immune cells, helped induce the initial immune response to antigens in the lungs. Eliminating TLR4 or blocking TLR4 function on the airway epithelial cells reduced the recruitment of immune cells to the lungs and the development of allergic disease.

This study demonstrates that TLR4 found on non-immune cells in the lungs contributes to the immune response to airborne antigens. The new results suggest that targeting TLRs may be a research avenue for developing novel treatments for allergic diseases such as asthma.

Julie Wu | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>