Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Another Piece of the Weight-Control Puzzle

12.08.2008
As scientists continue to investigate the brain's intricate neurocircuitry and its role in maintaining energy balance, they are forming a clearer picture of the myriad events that lead to weight gain and weight loss.

Controlling body weight is a complicated process, as any frustrated dieter might attest. But as scientists continue to investigate the brain’s intricate neurocircuitry and its role in maintaining energy balance, they are forming a clearer picture of the myriad events that lead to weight gain and weight loss.

In the August 10 on-line issue of Nature Neuroscience, a study led by scientists at Beth Israel Deaconess Medical Center (BIDMC) identifies another piece of this complex puzzle, demonstrating that the neurotransmitter GABA --one of the master communicators among neurons – plays a role in controlling energy balance.

“Body weight maintenance is made up of three basic stages,” explains the paper’s senior author Bradford Lowell, MD, PhD, an investigator in the Division of Endocrinology, Diabetes and Metabolism at BIDMC whose laboratory is working to identify the specific neurocircuits responsible for controlling food intake and/or energy through functional neuroanatomical mapping studies.

“In the first stage, the brain receives sensory input from the body [including information provided by circulating hormones such as leptin and ghrelin and from fuels such as glucose and fatty acids],” says Lowell, who is also a Professor of Medicine at Harvard Medical School.

In the second stage, he adds, the brain integrates this sensory information with cues it has received from the environment (such as aromas and other enticements) along with information gathered from the organism’s emotional state. Then, in the final stage, the brain’s neurocircuitry takes over, enabling the brain to make appropriate alterations in food intake and energy expenditure in order to maintain energy balance – and prevent weight gain and obesity.

Previous work had primarily focused on identifying the neuropeptides involved in this process. And indeed, this group of neurotransmitters often proves essential to maintaining energy balance – but not always.

“It is well known that AgRP [Agouti-related protein] neurons play a critical role in feeding and energy balance regulation,” explains Qingchun Tong, PhD, a postdoctoral fellow in the Lowell laboratory and the study’s first author. “However, the deletion of AgRP and NPY [two neuropeptides released from the AgRP neurons] produces little metabolic effect.”

An alternate theory proposed that release of the GABA neurotransmitter was mediating the function of AgRP neurons, an idea that had long been postulated but never examined.

To test this hypothesis, Tong and his colleagues generated a group of mice with disrupted release of GABA specifically from the AgRP neurons. As predicted, the genetically altered mice exhibited profound metabolic changes.

“The mice with AgRP neuron-specific disruption of GABA release were lean, had higher energy expenditure and showed resistance to diet-induced obesity,” says Tong. “We also found that these animals showed reduced food intake response to the hormone ghrelin. This suggests to us that the neurocircuit engaging GABA release from the AgRP neurons mediates at least part of ghrelin’s appetite-stimulating action.”

A series of studies to examine the function of glutamate and GABA release from other groups of neurons are currently underway as investigators continue to dissect the brain’s neurocircuitry.

“As these new findings demonstrate, GABA release is an important component that mediates the function of AgRP neurons,” says Tong. “Discoveries such as this will ultimately help us to design an efficient strategy to tackle the current epidemic of obesity and metabolic disease.”

This work was funded, in part, by grants from the National Institutes of Health and support from the North American Association for the Study of Obesity.

In addition to Lowell and Tong, coauthors include BIDMC investigators Chian-Ping Ye and Juli Jones and University of Texas Southwestern Medical Center investigator Joel Elmquist.

Beth Israel Deaconess Medical Center is a patient care, teaching and research facility of Harvard Medical School and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | Newswise Science News
Further information:
http://www.bidmc.harvard.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>