Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify gene for short-circuiting excess mucus in lung disease, common colds

15.09.2009
Scientists have identified the main genetic switch that causes excessive mucus in the lungs, a discovery that one day could ease suffering for people with chronic lung diseases like asthma and cystic fibrosis, or just those fighting the common cold.

The discovery was reported in a study posted online Sept. 14 by the Journal of Clinical Investigation. The new research sheds light on what has been a medical mystery - the precise biological reasons that the lungs in people with asthma, cystic fibrosis and other respiratory ailments clog with thick mucus.

Identifying the genetic circuits that cause mucous hyper-production gives researchers potential targets for new therapies to moderate or stop it, said Jeffrey Whitsett, M.D., the head of Neonatology, Perinatal and Pulmonary Biology at Cincinnati Children's Hospital Medical Center and the study's senior investigator.

"Everyone has had a stuffed up nose and cough after two or three weeks of a bad cold and most over-the-counter cold medications deal with mucus," Whitsett explained. "We still don't have effective therapies for removing excess mucous, whether it's someone with a cold or chronic lung disease. That's why we still tap on the chests of kids with cystic fibrosis to try and clear it."

The current study provides an entirely new understanding of how certain cells promote chronic lung infection and excess mucus production. Scientists previously thought that, after airways were attacked by an allergic response or inflammation, mucus cells (known as goblet cells) divided and proliferated at a very fast rate - a process known as hyperplasia. Instead, the Cincinnati Children's team discovered that beneficial lung cells, called Clara cells, instead change their cell type to become goblet/mucous cells in a process called metaplasia.

Dr. Whitsett and his colleagues also found the metaplasia process in this instance to be reversible. Goblet cells can change back to Clara cells if the detrimental genetic influence is blocked, highlighting a possible pathway for new treatments, according to Dr. Whitsett, who also is executive director of the Perinatal Institute at Cincinnati Children's.

The study identifies a transcription factor, SPDEF, as the master gene that regulates a chain of dozens of downstream genes involved in mucus production. SPDEF is an active player in other organ systems that need to produce mucus for normal function, such as the digestive system. In healthy lungs, however, the researchers report the gene is mostly quiet, as healthy lungs don't produce significant amounts of mucus.

Using an egg white protein called ovalbumin to induce an allergic reaction and inflammation in the lungs of mice, the researchers observed a dramatic elevation in the expression of SPDEF in the lung tissues of the affected animals. The animals also experienced hyper-production of thick mucus in their lungs. In mice where the SPDEF gene was switched off, inflammation and excessive mucus production did not occur, demonstrating the gene's potential as therapeutic or diagnostic target. Mice lacking SPDEF were unable to increase mucus production or develop goblet cells.

In mice where respiratory inflammation and excessive mucus production were present, the researchers report that SPDEF turned off genes involved in biological processes that help protect lung tissues from infection and damage. Conversely, SPDEF activated genes that promote inflammation and excessive mucus - in particular FOXA3, AGR2 and mucins.

By composition, mucus is a sugar-coated collection of large proteins that, in healthy conditions, help the body defend itself by collecting and then clearing out contaminants. In the case of AGR2 for example, the gene helps assemble mucus proteins by folding together different molecules. When SPDEF is over-expressed, it results in increased production of AGR2, which in turn promotes an over-abundance of protein folding and mucus production.

Dr. Whitsett cautioned it will be several years before the research results in a specific therapeutic approach that can be tested in people. In the meantime, his team has received several significant grants to conduct more extensive studies into the various genetic and molecular influences that control, or are controlled by, SPDEF and involved in excess mucus production.

The first author on the current study was Gang Chen, a graduate student in Dr. Whitsett's laboratory. The laboratory's research is supported by funding from the National Institutes of Health and the Cystic Fibrosis Foundation. The study was done in collaboration with the Netherlands Institute of Developmental Biology, with the research there being led by Dr. Hans Clevers.

About Cincinnati Children's

Cincinnati Children's Hospital Medical Center is one of 10 children's hospitals in the United States to make the Honor Roll in U.S. News and World Reports 2009-10 America's Best Children's Hospitals issue. It is #1 ranked for digestive disorders and is also highly ranked for its expertise in respiratory diseases, cancer, neonatal care, heart care, neurosurgery, diabetes, orthopedics, kidney disorders and urology. One of the three largest children's hospitals in the U.S., Cincinnati Children's is affiliated with the University of Cincinnati College of Medicine and is one of the top two recipients of pediatric research grants from the National Institutes of Health.

President Barack Obama in June 2009 cited Cincinnati Children's as an "island of excellence" in health care. For its achievements in transforming health care, Cincinnati Children's is one of six U.S. hospitals since 2002 to be awarded the American Hospital Association-McKesson Quest for Quality Prize for leadership and innovation in quality, safety and commitment to patient care. The hospital is a national and international referral center for complex cases. Additional information can be found at www.cincinnatichildrens.org.

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>