Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists highlight link between stress and appetite

15.08.2011
Researchers in the Hotchkiss Brain Institute (HBI) at the University of Calgary's Faculty of Medicine have uncovered a mechanism by which stress increases food drive in rats. This new discovery, published online this week in the journal Neuron, could provide important insight into why stress is thought to be one of the underlying contributors to obesity.

Normally, the brain produces neurotransmitters (chemicals responsible for how cells communicate in the brain) called endocannabinoids that send signals to control appetite. In this study, the researchers found that when food is not present, a stress response occurs that temporarily causes a functional re-wiring in the brain. This re-wiring may impair the endocannabinoids' ability to regulate food intake and could contribute to enhanced food drive.

The researchers also discovered that when they blocked the effects of stress hormones in the brain, the absence of food caused no change in the neural circuitry.

Researchers Jaideep Bains, Ph.D. and Quentin Pittman, Ph.D., looked specifically at nerve cells (neurons) in the region of the brain called the hypothalamus. This structure is known to have an important role in the control of appetite and metabolism and has been identified as the primary region responsible for the brain's response to stress.

Bains explains, "These findings could help explain how the cellular communication in our brains may be overridden in the absence of food. Interestingly, these changes are driven not necessarily by the lack of nutrients, but rather by the stress induced by the lack of food."

If similar changes occur in the human brain, these findings might have several implications for human health.

"For example, if we elect to pass over a meal, the brain appears to simply increase the drive in pathways leading to increased appetite," explains Pittman. "Furthermore, the fact that the lack of food causes activation of the stress response might help explain the relationship between stress and obesity."

These results lay the foundation for future studies to investigate the use of therapies that affect these systems in order to manipulate food intake. They also open the door to studies looking at whether or not the stress brought about by lack of food affects other systems where endocannabinoids are known to play a role.

"One thing we can say for sure, is that this research highlights the importance of food availability to our nervous system. The absence of food clearly brings about dramatic changes in the way our neurons communicate with each other," says Pittman.

This work was conducted jointly in the labs of Bains and Pittman and the experiments were carried out by Karen Crosby and Wataru Inoue, Ph.D. The research is supported by operating grants from the Canadian Institutes of Health Research (CIHR) and Alberta Innovates- Health Solutions (AI-HS).

Marta | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Bains Pittman food intake health services nerve cell stress hormone stress response

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>