Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists highlight link between stress and appetite

15.08.2011
Researchers in the Hotchkiss Brain Institute (HBI) at the University of Calgary's Faculty of Medicine have uncovered a mechanism by which stress increases food drive in rats. This new discovery, published online this week in the journal Neuron, could provide important insight into why stress is thought to be one of the underlying contributors to obesity.

Normally, the brain produces neurotransmitters (chemicals responsible for how cells communicate in the brain) called endocannabinoids that send signals to control appetite. In this study, the researchers found that when food is not present, a stress response occurs that temporarily causes a functional re-wiring in the brain. This re-wiring may impair the endocannabinoids' ability to regulate food intake and could contribute to enhanced food drive.

The researchers also discovered that when they blocked the effects of stress hormones in the brain, the absence of food caused no change in the neural circuitry.

Researchers Jaideep Bains, Ph.D. and Quentin Pittman, Ph.D., looked specifically at nerve cells (neurons) in the region of the brain called the hypothalamus. This structure is known to have an important role in the control of appetite and metabolism and has been identified as the primary region responsible for the brain's response to stress.

Bains explains, "These findings could help explain how the cellular communication in our brains may be overridden in the absence of food. Interestingly, these changes are driven not necessarily by the lack of nutrients, but rather by the stress induced by the lack of food."

If similar changes occur in the human brain, these findings might have several implications for human health.

"For example, if we elect to pass over a meal, the brain appears to simply increase the drive in pathways leading to increased appetite," explains Pittman. "Furthermore, the fact that the lack of food causes activation of the stress response might help explain the relationship between stress and obesity."

These results lay the foundation for future studies to investigate the use of therapies that affect these systems in order to manipulate food intake. They also open the door to studies looking at whether or not the stress brought about by lack of food affects other systems where endocannabinoids are known to play a role.

"One thing we can say for sure, is that this research highlights the importance of food availability to our nervous system. The absence of food clearly brings about dramatic changes in the way our neurons communicate with each other," says Pittman.

This work was conducted jointly in the labs of Bains and Pittman and the experiments were carried out by Karen Crosby and Wataru Inoue, Ph.D. The research is supported by operating grants from the Canadian Institutes of Health Research (CIHR) and Alberta Innovates- Health Solutions (AI-HS).

Marta | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Bains Pittman food intake health services nerve cell stress hormone stress response

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>