Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Gain New Understanding of Alzheimer's Trigger

A highly toxic beta-amyloid – a protein that exists in the brains of Alzheimer's disease victims – has been found to greatly increase the toxicity of other more common and less toxic beta-amyloids, serving as a possible "trigger" for the advent and development of Alzheimer's, researchers at the University of Virginia and German biotech company Probiodrug have discovered.

The finding, reported in the May 2 online edition of the journal Nature, could lead to more effective treatments for Alzheimer's. Already, Probiodrug AG, based in Halle, Germany has completed phase 1 clinical trials in Europe with a small molecule that inhibits an enzyme, glutaminyl cyclase, that catalyzes the formation of this hypertoxic version of beta-amyloid.

"This form of beta-amyloid, called pyroglutamylated (or pyroglu) beta-amyloid, is a real bad guy in Alzheimer's disease," said principal investigator George Bloom, a U.Va. professor of biology and cell biology in the College of Arts & Sciences and School of Medicine, who is collaborating on the study with scientists at Probiodrug. "We've confirmed that it converts more abundant beta-amyloids into a form that is up to 100 times more toxic, making this a very dangerous killer of brain cells and an attractive target for drug therapy."

Bloom said the process is similar to various prion diseases, such as mad cow disease or chronic wasting disease, where a toxic protein can "infect" normal proteins that spread through the brain and ultimately destroy it.

In the case of Alzheimer's, severe dementia occurs over the course of years prior to death.

"You might think of this pyroglu beta-amyloid as a seed that can further contaminate something that's already bad into something much worse – it's the trigger," Bloom said. Just as importantly, the hypertoxic mixtures that are seeded by pyroglu beta-amyloid exist as small aggregates, called oligomers, rather than as much larger fibers found in the amyloid plaques that are a signature feature of the Alzheimer's brain.

And the trigger fires a "bullet," as Bloom puts it. The bullet is a protein called tau that is stimulated by beta-amyloid to form toxic "tangles" in the brain that play a major role in the onset and development of Alzheimer's. Using mice bred to have no tau genes, the researchers found that without the interaction of toxic beta-amyloids with tau, the Alzheimer's cascade cannot begin. The pathway by which pyroglu beta-amyloid induces the tau-dependent death of neurons is now the target of further investigation to understand this important step in the early development of Alzheimer's disease

"There are two matters of practical importance in our discovery," Bloom said. "One, is the new insights we have as to how Alzheimer's might actually progress – the mechanisms which are important to understand if we are to try to prevent it from happening; and second, it provides a lead into how to design drugs that might prevent this kind of beta-amyloid from building up in the first place."

Said study co-author Hans-Ulrich Demuth, a biochemist and chief scientific officer at Probiodrug, "This publication further adds significant evidence to our hypothesis about the critical role pyroglu beta-amyloid plays in the initiation of Alzheimer's Disease. For the first time we have found a clear link in the relationship between pyroglu beta-amyloid, oligomer formation and tau protein in neuronal toxicity."

Bloom and his collaborators are now looking for other proteins that are needed for pyroglu beta-amyloid to become toxic. Any such proteins they discover are potential targets for the early diagnosis and/or treatment of Alzheimer's disease.

Fariss Samarrai | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>