Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find key mechanism of childhood respiratory disease

08.03.2011
Discovery of link between respiratory syncytial virus and oxidative stress could lead to new therapies

Researchers have identified a critical part of the process by which one of the world's most common and dangerous early childhood infections, respiratory syncytial virus, causes disease.

The discovery could lead to badly needed new therapies for RSV, which in 2005 was estimated to have caused at least 3.4 million hospitalizations and 199,000 deaths among children under five worldwide.

By analyzing samples taken from infected infants and data from laboratory-mouse experiments, University of Texas Medical Branch at Galveston scientists determined that RSV interferes with airway cells' ability to produce enzymes that keep highly damaging molecules known as reactive oxygen species under control. The virus does this by preventing the activation of a single protein needed for the expression of a variety of detoxifying enzymes. Reactive oxygen species then accumulate, causing cell-killing oxidative stress and inflammation in both infected and uninfected airway cells — a major factor in the damage done by RSV infection.

"The role of oxidative stress has been studied in everything from aging to asthma, but this is really the first study to implicate it in lung inflammation associated with viral infections," said Dr. Antonella Casola, an associate professor at UTMB Health and lead author of a paper on the research, published online March 4 in the "Articles in Press" section of the American Journal of Respiratory and Critical Care Medicine (http://ajrccm.atsjournals.org/articlesinpress.dtl). "We've been working on this project for a while — starting in cells, then moving to animal models and finally getting results in patients — so we're very excited about this paper."

The UTMB Health researchers followed up earlier studies in human cell cultures with experiments that showed a substantial reduction in the expression and activation of antioxidant enzymes in the lungs of RSV-infected mice. Further investigations revealed that mice infected by RSV had much lower levels of a protein called Nrf2 — a "transcription factor" needed to prompt the production of enzymes that clean up reactive oxygen species.

"What was really striking is that Nrf2 is a kind of master switch controlling the machinery of these antioxidant enzymes, and it appears the virus blocks its activity," said UTMB Health professor Dr. Roberto Garofalo, also a lead author on the study. "This is interesting because genetic factors have been shown to be associated with other airway diseases, and the obvious question now is do the children who develop the most severe disease in response to RSV also have an Nrf2 gene that favors a low level of expression of these antioxidant enzymes? Are we seeing a combination of two hits, one from the virus and one from genetics?"

The apparent involvement of Nrf2 also opens an intriguing therapeutic possibility, Garofalo said, because compounds that induce cells to make more of the transcription factor are already in clinical trials as potential cancer therapies. Another possibility is the delivery of short-term genetic therapy via a genetically engineered virus licensed by the National Heart, Lung and Blood Institute.

Any such intervention will have to await further human studies like the one described in the AJRCCM paper. In that part of the investigation, the researchers measured biochemical markers of reactive oxygen species and levels of antioxidant enzymes in nasal samples from 30 infants with RSV infections. The severity of the babies' disease ranged from relatively minor upper respiratory tract infections to full-blown lung disease requiring respiratory support from a ventilator.

"Our findings in patients were very consistent with what we saw in mice, " Garofalo said. "We found a significant increase in markers of oxidative injury and a significant decrease in antioxidant enzyme expression corresponding to the severity of the disease."

Because the study was conducted in a relatively small number of human subjects, Garofalo and Casola plan to conduct larger human investigations under the auspices of UTMB Health's Institute for Translational Research. In future research, they also hope to examine the possible role of other viruses in inhibiting antioxidant enzymes, produce a more detailed profile of virus-induced changes in antioxidant levels and detail the magnitude and type of oxidative damage done to airways by RSV infection.

Other authors of the American Journal of Respiratory and Critical Care Medicine paper include UTMB Health research scientist Yashoda Hosakote, allergy and immunology clinical fellows Dr. Paul Jantzi and Dr. Dana Esham, assistant professor Heidi Spratt and professor Alexander Kurosky. The National Institutes of Health, the UTMB NHLBI Proteomic Center for Airway Inflammation, the National Institute of Environmental Health Sciences, the Flight Attendant Medical Research Institute and UTMB Health's Clinical and Translational Sciences Award supported this research.

ABOUT UTMB Health: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB Health is a component of the University of Texas System.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144
www.utmb.edu

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>