Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists may be able to double efficacy of radiation therapy

19.12.2011
Scientists may have a way to double the efficacy and reduce the side effects of radiation therapy.

Georgia Health Sciences University scientists have devised a way to reduce lung cancer cells' ability to repair the lethal double-strand DNA breaks caused by radiation therapy.

"Radiation is a great therapy – the problem is the side effects," said Dr. William S. Dynan, biochemist and Associate Director of Research and Chief, Nanomedicine and Gene Regulation at the GHSU Institute of Molecular Medicine and Genetics. "We think this is a way to get the same amount of cancer cell death with less radiation or use the same amount and maybe cure a patient that could not be cured before."

Radiation therapy capitalizes on radiation's ability to kill cells by causing double-strand breaks in DNA. But the fact that varying levels of radiation are essentially everywhere – food, air, the ground, etc. – means all cells, including cancer cells, have internal mechanisms to prevent the lethal breakage.

GHSU scientists are targeting the natural defense mechanisms by packaging a piece of an antibody against one of them with folate, which has easy access to most cells, particularly cancer cells. Many cancers, including the lung cancer cells they studied, have large numbers of folate receptors so that cancer cells get a disproportionate share of the package.

Previous efforts to destroy cancer cells' ability to avoid radiation damage have focused on receptors on their surface, said Dr. Shuyi Li, molecular biologist, pediatrician and corresponding author on the study in the International Journal of Radiation Oncology.

To get a more direct hit, the scientists took advantage of folate receptors as a point of entry by chemically binding folate with the small piece of their antibody, ScFv 18-2. The package heads straight for the cell nucleus where a different chemical environment breaks the bond, freeing ScFv 18-2 to attack the regulatory region of DNA-dependent protein kinase, an enzyme essential to DNA repair.

"We are joining a targeting molecule with a cargo," said Dynan. "This strategy targets one of the key enzymes so it's harder to repair," Li said. This makes cancer cells more vulnerable to radiation.

Dynan and Li say the approach could be used to deliver any number of drugs directly inside cancer cells. Future studies include looking at other cell entry points as well as other targets to ensure they have the most effective package. Studies to date have been in human lung cancer cells in culture, so next steps also need to include animal studies.

Their approach mimics a natural process called endocytosis in which cells engulf proteins and other substances they want to let inside but can't fit through normal doorways.

Folate receptors already are being used as direct entry points for chemotherapeutic drugs, including clinical studies of a new strategy for ovarian cancer. GHSU is participating in clinical trials of a therapy that pairs an agent too toxic to be delivered through the bloodstream with folate to better target one of the most deadly cancers.

Dynan is the Georgia Research Alliance Eminent Scholar in Molecular Biology. Dynan and Li are both faculty members in GHSU's Medical College of Georgia. Dynan also is a faculty member in the College of Graduate Studies.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>