Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key event in prostate cancer progression

27.07.2009
A study led by researchers at the Ohio State University Comprehensive Cancer Center and Dana-Farber Cancer Institute reveals how late-stage, hormone-independent prostate tumors gain the ability to grow without need of hormones.

The onset of hormone-independent growth marks an advanced and currently incurable stage of prostate cancer.

The study, published in the July 24, 2009, issue of the journal Cell, focuses on androgen receptors, molecules located in the nucleus of cells of the prostate gland and other tissues. Male sex hormones – androgens – bind with these receptors to activate genes that control cell growth.

The researchers show that in androgen-independent prostate cancer, androgen receptors are reprogrammed to regulate a group of genes involved in a different, later, phase of cell division, triggering rapid cell growth. They further show that a modification of a chief component of the chromosome is responsible for this reprogramming.

"Some late-phase prostate cancer does not require androgen hormones for tumor growth, but it does require androgen receptors," says first author and co-corresponding author Qianben Wang, assistant professor of molecular and cellular biochemistry and a researcher with the Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute.

"Our study reveals the role of androgen receptors in hormone independent prostate cancer, how they become active in that disease and what genes they regulate to promote tumor growth."

The findings provide a better understanding of prostate cancer and could identify new therapeutic targets and lead to new treatments for this lethal stage of the disease, he says.

Prostate cancer is the most frequently diagnosed cancer in men. An estimated 192,280 new cases are expected in the United States in 2009, along with 27,360 deaths from the disease.

To conduct the study, Wang working with corresponding author Dr. Myles Brown, professor of medicine at Harvard Medical School and Dana-Farber Cancer Institute, and a group of colleagues used hormone-dependent and hormone independent prostate cancer cell lines, gene expression data and tissue from human tumors.

They showed that in hormone-dependent disease, androgen receptors regulate an early phase of cell cycle. In hormone-independent prostate cancer, however, the receptors are reprogrammed to selectively regulate genes involved in actual cell division, that is, the mitotic phase of the cycle.

A gene called UBE2C was a standout among these genes, and increased expression of that gene correlated with progression to the hormone-independent phase.

Furthermore, a chemical change – an epigenetic change – in a histone protein associated with that gene enabled androgen receptors to bind with and activate the gene in hormone-independent prostate cancer.

Finally, they show that over-expression of this gene is necessary for the growth of the hormone-independent prostate cancer cells.

"Interestingly," Wang says, "the UBE2C gene is also over-expressed in breast, lung, ovary, bladder, thyroid and esophageal cancers, suggesting that our findings could have wide application."

Funding from the National Cancer Institute and Department of Defense supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>