Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how brain corrects bumps to body

06.12.2011
Researchers have identified the area of the brain that controls our ability to correct our movement after we’ve been hit or bumped— a finding that may have implications for understanding why subjects with stroke often have severe difficulties moving.
The fact that humans rapidly correct for any disturbance in motion demonstrates the brain understands the physics of the limb – scientists just didn’t know what part of the brain supported this feedback response – until now.

Several pathways and regions of the central nervous system could contribute to our response to external knocks to the body, but researchers only recently discovered that the pathway through the primary motor cortex provides this knowledge of the physics of the limb.

“To say this process is complex is an understatement,” says Stephen Scott, a neuroscience professor and motor behavior specialist in the Department of Biomedical and Molecular Sciences. “Voluntary movement is really, really hard in terms of the math involved. When I walk around, the equations of my motion are like a small book. The best physicists can’t solve these complicated equations, but your brain can do it incredibly quickly.”

The corrective movement pathway works by limiting and correcting the domino effect of involuntary bodily movement caused by an external blow. For example, a blow to the shoulder that causes the whole arm to swing about may require the brain to quickly turn on muscles in the shoulder, bicep, forearm and hand in order to regain control of the limb. Likewise, a football player who collides with an opponent during a game has to respond quickly to correct the movement and remain upright.

Strokes that take place in the primary motor cortex may cause varying levels of damage to this corrective movement pathway. This varying damage may explain why some stroke patients are able to improve their movement skills in rehabilitation and why some patients remain uncoordinated and unsteady.

Dr. Scott now wants to apply these findings to stroke patients by examining the damage these patients have to their sensory pathways and how this damage relates to movement problems. He believes that these findings may support an increased focus on first-stage sensory rehabilitation to help rebuild pathways that transmit sensory information to the brain before treatment moves to a focus on motor skills.

Other Queen’s researchers involved with this study are J. Andrew Pruszynski, Isaac Kurtzer, Joseph Nashed, Mohsen Omrani (Centre for Neuroscience Studies), and Brenda Brouwer (Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences).

This work was recently published in Nature, and was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Science and Engineering Research Council of Canada (NSERC).

Anne Craig | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>