Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how brain corrects bumps to body

06.12.2011
Researchers have identified the area of the brain that controls our ability to correct our movement after we’ve been hit or bumped— a finding that may have implications for understanding why subjects with stroke often have severe difficulties moving.
The fact that humans rapidly correct for any disturbance in motion demonstrates the brain understands the physics of the limb – scientists just didn’t know what part of the brain supported this feedback response – until now.

Several pathways and regions of the central nervous system could contribute to our response to external knocks to the body, but researchers only recently discovered that the pathway through the primary motor cortex provides this knowledge of the physics of the limb.

“To say this process is complex is an understatement,” says Stephen Scott, a neuroscience professor and motor behavior specialist in the Department of Biomedical and Molecular Sciences. “Voluntary movement is really, really hard in terms of the math involved. When I walk around, the equations of my motion are like a small book. The best physicists can’t solve these complicated equations, but your brain can do it incredibly quickly.”

The corrective movement pathway works by limiting and correcting the domino effect of involuntary bodily movement caused by an external blow. For example, a blow to the shoulder that causes the whole arm to swing about may require the brain to quickly turn on muscles in the shoulder, bicep, forearm and hand in order to regain control of the limb. Likewise, a football player who collides with an opponent during a game has to respond quickly to correct the movement and remain upright.

Strokes that take place in the primary motor cortex may cause varying levels of damage to this corrective movement pathway. This varying damage may explain why some stroke patients are able to improve their movement skills in rehabilitation and why some patients remain uncoordinated and unsteady.

Dr. Scott now wants to apply these findings to stroke patients by examining the damage these patients have to their sensory pathways and how this damage relates to movement problems. He believes that these findings may support an increased focus on first-stage sensory rehabilitation to help rebuild pathways that transmit sensory information to the brain before treatment moves to a focus on motor skills.

Other Queen’s researchers involved with this study are J. Andrew Pruszynski, Isaac Kurtzer, Joseph Nashed, Mohsen Omrani (Centre for Neuroscience Studies), and Brenda Brouwer (Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences).

This work was recently published in Nature, and was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Science and Engineering Research Council of Canada (NSERC).

Anne Craig | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>