Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop powerful new animal model for metastatic prostate cancer

27.01.2014
The new model, known as RapidCaP, reveals a cancer-gene 'switch' that drives metastasis

Prostate cancer is the most common form of cancer in men. Affecting about 1 in 6 men, it is the second deadliest cancer. Research has been stymied by imperfect animal models of the disease, which are costly, take considerable time to develop, and fail to mimic the most lethal aspects of the illness.


Scientists have developed a new mouse model for metastatic prostate cancer that more accurately reflects the most lethal events in human patients. Shown here is a tumor that metastasized from its original site in the prostate to the lung. Scientists were surprise to find the Myc protein in these tumors and, through further experiments, discovered that simply increasing the amount of Myc in the cell is enough to drive metastasis, suggesting a druggable target for metastatic prostate cancer.

Credit: Lloyd Trotman, Cold Spring Harbor Laboratory

Now, Cold Spring Harbor Laboratory (CSHL) scientists have developed a new method to rapidly create much better mouse models for metastatic prostate cancer. This discovery allows scientists to investigate the causes of the disease while at the same time testing new therapeutics to treat it.

The most widely used mouse models for prostate cancer rarely develop tumors that metastasize, making it almost impossible to study the terminal, lethal events in cancer progression. In work published today in Cancer Discovery, a CSHL team led by Associate Professor Lloyd Trotman report that they have developed a new mouse model that does generate metastases from primary prostate tumors. To create the model, called RapidCaP, scientists surgically deliver gene mutations directly into the prostate. A luminescent marker is also injected, which enables live monitoring of metastasis, tumor regression after treatment, and disease relapse.

Trotman and his team, which included collaborators from Weill Cornell Medical College, Mt. Sinai School of Medicine and the Dana-Farber Cancer Institute, used RapidCaP to generate mice that developed metastatic prostate cancer with classic hallmarks of this disease, including resistance to hormone therapy. However, PI 3-kinase activity, a well-known driver of prostate cancer, was notably absent from the metastasized tumors. In these deadly dispersed tumors, Trotman and his colleagues were surprised to find that a different cancer gene, called Myc, had taken over.

The team explored Myc's role in metastasis. They found that prostate tumors could be driven to metastasize simply by increasing the amount of Myc protein. Trotman collaborated with Dana-Farber's Professor James Bradner to treat these very sick animals with a newly discovered drug called JQ1 that lowers the amount of Myc in cells. Their approach succeeded in shrinking the metastases, suggesting that the switch to Myc is required for maintenance of tumor cells that have metastasized throughout the body.

"The RapidCaP system has revealed a specific role for Myc as a druggable driver of metastasis in prostate cancer," says Trotman. "So there's hope that our model provides a fast and faithful test-bed for developing new approaches to cure the type of prostate cancer that today is incurable."

This work was supported by grants from the NIH, Department of the Army, STARR foundation, Robertson Research Fund of Cold Spring Harbor Laboratory and by support from the CSHL CTD2 Cancer Target Discovery and Development Network Grant.

"RapidCaP, a novel GEM model for analysis and therapy of metastatic prostate cancer reveals Myc as a driver of Pten-mutant metastasis" appears online in Cancer Discovery on January 21, 2014. The authors are: Hyejin Cho, Tali Herzka, Wu Zheng, Jun Qi, John Wilkinson, James Bradner, Brian Robinson, Mireia Castillo-Martin, Carlos Cordon-Cardo, Lloyd Trotman. The paper can be obtained online at: http://cancerdiscovery.aacrjournals.org/content/early/2014/01/18/2159-8290.CD-13-0346.abstract

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center.

Jaclyn Jansen | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>