Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop powerful new animal model for metastatic prostate cancer

27.01.2014
The new model, known as RapidCaP, reveals a cancer-gene 'switch' that drives metastasis

Prostate cancer is the most common form of cancer in men. Affecting about 1 in 6 men, it is the second deadliest cancer. Research has been stymied by imperfect animal models of the disease, which are costly, take considerable time to develop, and fail to mimic the most lethal aspects of the illness.


Scientists have developed a new mouse model for metastatic prostate cancer that more accurately reflects the most lethal events in human patients. Shown here is a tumor that metastasized from its original site in the prostate to the lung. Scientists were surprise to find the Myc protein in these tumors and, through further experiments, discovered that simply increasing the amount of Myc in the cell is enough to drive metastasis, suggesting a druggable target for metastatic prostate cancer.

Credit: Lloyd Trotman, Cold Spring Harbor Laboratory

Now, Cold Spring Harbor Laboratory (CSHL) scientists have developed a new method to rapidly create much better mouse models for metastatic prostate cancer. This discovery allows scientists to investigate the causes of the disease while at the same time testing new therapeutics to treat it.

The most widely used mouse models for prostate cancer rarely develop tumors that metastasize, making it almost impossible to study the terminal, lethal events in cancer progression. In work published today in Cancer Discovery, a CSHL team led by Associate Professor Lloyd Trotman report that they have developed a new mouse model that does generate metastases from primary prostate tumors. To create the model, called RapidCaP, scientists surgically deliver gene mutations directly into the prostate. A luminescent marker is also injected, which enables live monitoring of metastasis, tumor regression after treatment, and disease relapse.

Trotman and his team, which included collaborators from Weill Cornell Medical College, Mt. Sinai School of Medicine and the Dana-Farber Cancer Institute, used RapidCaP to generate mice that developed metastatic prostate cancer with classic hallmarks of this disease, including resistance to hormone therapy. However, PI 3-kinase activity, a well-known driver of prostate cancer, was notably absent from the metastasized tumors. In these deadly dispersed tumors, Trotman and his colleagues were surprised to find that a different cancer gene, called Myc, had taken over.

The team explored Myc's role in metastasis. They found that prostate tumors could be driven to metastasize simply by increasing the amount of Myc protein. Trotman collaborated with Dana-Farber's Professor James Bradner to treat these very sick animals with a newly discovered drug called JQ1 that lowers the amount of Myc in cells. Their approach succeeded in shrinking the metastases, suggesting that the switch to Myc is required for maintenance of tumor cells that have metastasized throughout the body.

"The RapidCaP system has revealed a specific role for Myc as a druggable driver of metastasis in prostate cancer," says Trotman. "So there's hope that our model provides a fast and faithful test-bed for developing new approaches to cure the type of prostate cancer that today is incurable."

This work was supported by grants from the NIH, Department of the Army, STARR foundation, Robertson Research Fund of Cold Spring Harbor Laboratory and by support from the CSHL CTD2 Cancer Target Discovery and Development Network Grant.

"RapidCaP, a novel GEM model for analysis and therapy of metastatic prostate cancer reveals Myc as a driver of Pten-mutant metastasis" appears online in Cancer Discovery on January 21, 2014. The authors are: Hyejin Cho, Tali Herzka, Wu Zheng, Jun Qi, John Wilkinson, James Bradner, Brian Robinson, Mireia Castillo-Martin, Carlos Cordon-Cardo, Lloyd Trotman. The paper can be obtained online at: http://cancerdiscovery.aacrjournals.org/content/early/2014/01/18/2159-8290.CD-13-0346.abstract

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center.

Jaclyn Jansen | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

For pollock surveys in Alaska, things are looking up

22.05.2015 | Agricultural and Forestry Science

Mission possible: This device will self-destruct when heated

22.05.2015 | Power and Electrical Engineering

NOAA's GOES-R satellite begins environmental testing

22.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>