Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Design Experimental Treatment for Iron-Overload Diseases

03.11.2011
Iron overload is a common condition affecting millions of people worldwide. Excess iron in the body is toxic, and deposits can cause damage to the liver, heart and other organs. Current treatments, researchers say, are not ideal and have significant side effects.

Iron in the body is regulated by a hormone called hepcidin, and a deficiency in this hormone can cause the iron overload seen in genetic disorders like hereditary hemochromatosis and Cooley's anemia.


Journal of Clinical Investigation
Structure of the human hormone hepcidin (top panel) and the portion used for the minihepcidin design (bottom panel).


In the hopes of finding a treatment for iron overload, UCLA researchers have developed a new type of therapy based on small molecules that mimic the effects of hepcidin in mice. Published online Nov. 1 in the peer-reviewed Journal of Clinical Investigation, their findings could lead to new drugs to help prevent the condition.

Hepcidin works by fitting into a receptor protein known as ferroportin, which causes a change in iron flow in the body. The UCLA team systematically worked with the hormone–receptor interface to learn how the two pieces fit together and which part of hepcidin is the most important for binding to ferroportin.

"Like with jigsaw puzzle pieces, we tried to find the best fit," said Dr. Elizabeta Nemeth, the study's senior author and an associate professor of medicine at the David Geffen School of Medicine at UCLA.

Nemeth, co-director of the UCLA Center for Iron Disorders, noted that this is the first attempt to develop medications that mimic hepcidin. Because hepcidin contains 25 amino acids and numerous disulfide bonds, it would be expensive and difficult to reproduce the hormone as a medication.

The UCLA team zeroed in on the areas of hepcidin and ferroportin that provided the best fit to generate iron-regulating activity. Surprisingly, they found that the first third of the

hepcidin molecule had an effect similar to that of the whole molecule. They then re-engineered this portion of the molecule to make it even more effective and named the resulting new molecules "minihepcidins."

"We found that just a few amino acids were enough to provide an effective scaffold for the minihepcidin design," said Piotr Ruchala, a visiting assistant professor of medicine at the Geffen School of Medicine.

The team confirmed that the minihepcidins were effective in healthy mice and demonstrated that they could prevent iron overload in mouse models of hereditary hemochromatosis.

"Using this structure and function analysis, we were able to develop minihepcidins that were even more effective than the naturally occurring hormone," said study author Dr. Tomas Ganz, a professor of medicine and pathology and co-director of the Center for Iron Disorders at the Geffen School of Medicine.

Ganz added that the UCLA findings built on previous research by the team and collaborators around the world that originally helped identify the role of hepcidin and ferroportin in iron regulation.

The next step is to identify the optimal form of minihepcidin for human trials. According to UCLA researchers, if the molecules' safety and efficacy is confirmed, minihepcidins could be used alone or together with current treatments for iron-overload diseases.

The study was funded by the National Institute of Diabetes, Digestive and Kidney Diseases, which is part of the National Institutes of Health, and the Will Rogers Fund.

UCLA is currently negotiating a license to this technology with a biotechnology company that will take the minihepcidins through pre-clinical development and into clinical trials.

Other study authors included Gloria C. Preza of the UCLA Department of Pathology; Rogelio Pinon and Bo Qiao of the UCLA Department of Medicine; Emilio Ramos of the UCLA Department of Chemistry and Biochemistry; Michael Peralta of the Columbia University Department of Chemistry; Shantanu Sharma of the California Institute of Technology's Materials and Process Simulation Center; and Alan Waring of the UC Irvine School of Medicine's Department of Physiology and Biophysics.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Rachel Champeau | Newswise Science News
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>