Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decode 'software' instructions of aggressive leukemia cells

30.10.2012
Researchers locate molecules that drive the development of 3 forms of deadly white blood cell cancers, pointing researchers to new potential therapeutic targets

A team of national and international researchers, led by Weill Cornell Medical College scientists, have decoded the key "software" instructions that drive three of the most virulent forms of acute lymphoblastic leukemia (ALL). They discovered ALL's "software" is encoded with epigenetic marks, chemical modifications of DNA and surrounding proteins, allowing the research team to identify new potential biomarkers and therapeutic targets.

The research, published in Cancer Discovery, is the first study to show how these three different forms of white blood cell cancer are epigenetically programmed by several different molecules controlling cascading biological networks that manipulate normal gene function, directing cancer development and growth.

"Epigenetic programming is the software that is written on to human DNA, which can be viewed as its hard drive. This programming contains the instructions that determine how cells including leukemia cells function and cause disease," says the study's lead investigator, Dr. Ari Melnick, associate professor of medicine and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College.

"Finding the instructions that ultimately lead to cancer development, and to the especially bad outcome seen in patients with these different forms of ALL, is especially urgent. Epigenetic instructions are contained in many chemical layers. Our study is the first to integrate the decoding of many layers simultaneously, which has enabled us to unlock some of the mysteries explaining the malignant and aggressive behavior of these leukemias," says Dr. Melnick, who is also a hematologist-oncologist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

Abnormal Epigenetic Programming Leads to Poor Outcomes

The research team examined abnormalities in the "software" epigenetic programming that leads to the three forms of adult B-acute lymphoblastic leukemia (B-ALL), the most common form of ALL. These forms are BCR-ABL1-positive B-ALL, E2A-PBX1-positive B-ALL, and MLLr-B-ALL. These three B-ALL subtypes feature mutations of different master regulatory genes which force bone marrow cells to produce cancer-promoting proteins. Long-term survival is less than 40 percent among these patients.

"Similar to normal tissue, we believe that tumors may be dependent on specific patterns of epigenetic programming -- especially in B-ALL, where studies suggests epigenomic programming is globally disrupted," Dr. Melnick says. "Our goal was to identify epigenetically modified genes and the molecular machines that cause them to become abnormally programmed."

To that end, the research team performed DNA methylation and gene expression profiling on 215 adult B-ALL patients enrolled in the ECOG E2993 clinical trial, a multi-center and multi-national study, testing different forms of treatment in patients with ALL.

Researchers identified core epigenetic gene signatures that were associated with abnormal fusion proteins. In the case of BCR-ABL1-positive B-ALL, they found that the most deregulated gene network centered around an extraordinarily epigenetically deregulated gene they identified as interleukin-2 receptor alpha, which encodes a protein called CD25.

"Among patients who had BCR-ABL1-positive B-ALL, it was those with aberrant epigenetic programming of CD25 that had significantly worse outcome," says Dr. Melnick. "It's the patients that have this programming glitch that do really poorly." Although the researchers don't yet know what CD25 does, and why it is important, they say CD25 will be a useful biomarker to test for patients that are at highest risk for poorer outcome.

Dr. Melnick stresses that therapeutic antibodies to the CD25 protein already exist that can, theoretically, destroy leukemic cells expressing this protein. The research team showed that using the CD25 antibody successfully killed BCR-ABL1-positive B-ALL in laboratory experiments. "One could potentially conceive of a human clinical trial where those antibodies are used to attack these cancerous cells," he says.

Researchers also discovered what is writing the bad software in the other two B-ALL subtypes. In both cases, the abnormal cancer proteins E2A-PBX1 and MLLr turn out to be directly involved in altering the epigenetic programming of leukemic cells. Remarkably, MLLr epigenetically turns on a powerful cancer protein called BCL6. In the study, drugs developed by Dr. Melnick that block BCL6 activity potently killed and suppressed the ALL cells in patients enrolled in this clinical trial, which warrants the testing of BCL6 inhibitors in this aggressive form of ALL.

"This study links the direct actions of oncogenic fusion proteins with disruption of epigenetic regulation that leads to abnormal production of cancer-driving genes," Dr. Melnick says. "It potentially provides us with a biomarker for cancer outcomes as well as potential treatments in these aggressive forms of leukemia."

This research study was supported by the Chemotherapy Foundation, Burroughs Wellcome Foundation and the Sackler Center for Biomedical and Physical Sciences at the Weill Cornell Medical College.

Study co-authors include Dr. Sarah Brennan, Yushan Li, Dr. Chuanxin Huang, Yuan Xin, Dr. Monica L. Guzman and Dr. Olivier Elemento from Weill Cornell; Dr. Huimin Geng, formerly of Weill Cornell and now at University of California, San Francisco; Dr. Janis Racevskis and Dr. Elisabeth Paietta from Albert Einstein College of Medicine; Dr. Thomas A. Milne, Dr. Wei-Yi Chen, Dr. Debabrata Biswa, Dr. C. David Allis and Dr. Robert G. Roeder from Rockefeller University; Christian Hurtz, Dr. Soo-Mi Kweon, Dr. Seyedmehdi Shojaee and Dr. Markus Müschen from the University of Southern California, Los Angeles; Lynette Zickl and Dr. Donna Neuberg from the Dana Farber Cancer Institute, Boston; Dr. Rhett P. Ketterling and Dr. Mark R. Litzow from the Mayo Clinic, Rochester, Minnesota; Dr. Selina M. Luger from the University of Pennsylvania; Dr. Martin S. Tallman from the Memorial Sloan-Kettering Cancer Center; Dr. Jacob M. Rowe from the Rambam Medical Center in Haifa, Israel; and Dr. Hillard Lazarus from Case Western Reserve University in Cleveland, Ohio.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Lauren Woods | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>