Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Creates ‘Smart Cane’ for Blind to ‘See‘

01.10.2010
In 1931, the Lion’s Club International began a national program promoting the use of white canes to help the blind “see.” Now, scientists at UALR -- University of Arkansas at Little Rock -- are turning to the organization to test a next generation “smart” cane. The device provides detail and dimension to enable the sightless to navigate in an a physical environment.

Dr. Cang Ye, associate professor of applied science in UALR’s Donaghey College of Engineering and Information Technology, recently received a nationally competitive research grant of $320,389 from the National Science Foundation’s Robust Intelligence Program to develop new computer vision methods and build portable blind navigational devices that may guide visually impaired people in unstructured environment.

Once the device is built, Ye will partner with rehabilitation specialists at Lion’s World Services for the Blind -- who’s headquarters is next door to the UALR campus -- and students at the Arkansas School for the Blind to help test the smart canes.

“There are no devices available that assist blind travelers in the way that Dr. Ye hopes the Smart cane will,” said Dr. Larry Dickerson, chief executive officer and president of Lions World Services for the Blind. “We are eager for him to develop a working prototype. We will evaluate its effectiveness and perhaps suggest refinements with the help of our clients who come from all over the United States and our experienced staff.”

Electronic white canes used by the blind have been around for several years. But Ye’s research hopes to vastly improved the “vision” with smart canes can provide the sightless.

“The science of the project is to devise computer vision methods that may enable the Portable Blind Navigational Devices (PBNDs),” Ye said.

Ye and his team of researchers will use Flash LADAR (laser detection and ranging) (LADAR) 3-dimensional imaging sensor to provide the blind a more detailed “picture” of a physical environment.

“We use a Flash LADAR 3D imaging sensor for perception,” he said. “The imaging sensor produces both intensity image and range image of its environment. Each pixel in the range image contains distance information of the corresponding pixel in the intensity image.”

His team has developed computer vision methods include an ego-motion estimation algorithm called VR-Odometry (VRO) and a 3D data segmentation method. They will be refined, validated through this project and their real-time implemention in the PBNDs will be achieved at the end of the project.

“The VRO estimates the sensor’s motion by simultaneously processing the intensity and range images. It will extract features in each two consecutive intensity images, match features of the two images, obtain the distance information of the matched features, and compute the change of the sensor’s position and orientation,” he said. “This method can provide ‘where am I?’ information to the blind.”

Electronic white canes used by the blind have been around for several years. But Ye’s research hopes to create computer software that can detail where a staircase or a doorway is located in a room; where a drop off in the floor exists or an overhead bulkhead can be found. The core technology is 3D data segmentation. Once the program is created, it can be installed in a portable “cane” and provide information orally to a sightless person, who then can know the lay of the land.

“This is crucial navigational information that is difficult to obtain by using a conventional white cane,” Ye said. “The data segmentation method can also provide obstacle information such as an overhang obstacle or drop-off. The project’s hypothesis is that a single Flash LADAR sensor can solve blind navigation problems -- avoiding obstacles and way-finding. Thus it is possible to build portable navigational device.”

The term "way-finding" refers to how the blind move toward a destination. Finding waypoints, such as stairways, hallways, and the awareness of his or her position contribute to the goal to move from one point to another.

The NSF grant will involve Ye, two graduate students and a number of undergraduate students at UALR’s EIT college. The NSF grant will involve Ye, two graduate students and a number of undergraduate students at UALR’s EIT college.

The initial study that led to the grant was supported in part by UALR's Office of Research and Sponsored Programs, Arkansas Space Grant Consortium, Arkansas NASA EPSCoR Program, NISH, a nonprofit agency creating ;job opportunities for people with severe disabilities; the American Society for Engineering Education; and Office of Naval Research.

“We have Lion’s World Service for the Blind and Arkansas School for the Blind as our partners,” Ye said. “They will help us evaluate the devices and provide opinions to refine the devices during the project period.”

Throughout history, the blind and visually impaired have used canes, staffs -- even sighted people used sticks as traveling aids. From the biblical era shepherd’s staff to the dapper walking sticks of the 19th century, canes have been used as tools for traveling.

In the early 1920s, a British photographer blinded following an accident and uncomfortable with traffic around his home painted his walking stick white to help the sighted take notice of him.

In 1931, the Lion's Club International began a national program promoting the use of white canes for persons who are blind.

When the blind veterans of World War II returned to America, the form and the use of the white cane was further altered when Dr. Richard Hoover developed the "long cane" or "Hoover" method of cane travel.

These white canes are designed to be used as mobility devices and returned the cane to its original role as a tool for mobility, but maintained the symbolic role as an identifier of blind independence.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>