Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Creates ‘Smart Cane’ for Blind to ‘See‘

01.10.2010
In 1931, the Lion’s Club International began a national program promoting the use of white canes to help the blind “see.” Now, scientists at UALR -- University of Arkansas at Little Rock -- are turning to the organization to test a next generation “smart” cane. The device provides detail and dimension to enable the sightless to navigate in an a physical environment.

Dr. Cang Ye, associate professor of applied science in UALR’s Donaghey College of Engineering and Information Technology, recently received a nationally competitive research grant of $320,389 from the National Science Foundation’s Robust Intelligence Program to develop new computer vision methods and build portable blind navigational devices that may guide visually impaired people in unstructured environment.

Once the device is built, Ye will partner with rehabilitation specialists at Lion’s World Services for the Blind -- who’s headquarters is next door to the UALR campus -- and students at the Arkansas School for the Blind to help test the smart canes.

“There are no devices available that assist blind travelers in the way that Dr. Ye hopes the Smart cane will,” said Dr. Larry Dickerson, chief executive officer and president of Lions World Services for the Blind. “We are eager for him to develop a working prototype. We will evaluate its effectiveness and perhaps suggest refinements with the help of our clients who come from all over the United States and our experienced staff.”

Electronic white canes used by the blind have been around for several years. But Ye’s research hopes to vastly improved the “vision” with smart canes can provide the sightless.

“The science of the project is to devise computer vision methods that may enable the Portable Blind Navigational Devices (PBNDs),” Ye said.

Ye and his team of researchers will use Flash LADAR (laser detection and ranging) (LADAR) 3-dimensional imaging sensor to provide the blind a more detailed “picture” of a physical environment.

“We use a Flash LADAR 3D imaging sensor for perception,” he said. “The imaging sensor produces both intensity image and range image of its environment. Each pixel in the range image contains distance information of the corresponding pixel in the intensity image.”

His team has developed computer vision methods include an ego-motion estimation algorithm called VR-Odometry (VRO) and a 3D data segmentation method. They will be refined, validated through this project and their real-time implemention in the PBNDs will be achieved at the end of the project.

“The VRO estimates the sensor’s motion by simultaneously processing the intensity and range images. It will extract features in each two consecutive intensity images, match features of the two images, obtain the distance information of the matched features, and compute the change of the sensor’s position and orientation,” he said. “This method can provide ‘where am I?’ information to the blind.”

Electronic white canes used by the blind have been around for several years. But Ye’s research hopes to create computer software that can detail where a staircase or a doorway is located in a room; where a drop off in the floor exists or an overhead bulkhead can be found. The core technology is 3D data segmentation. Once the program is created, it can be installed in a portable “cane” and provide information orally to a sightless person, who then can know the lay of the land.

“This is crucial navigational information that is difficult to obtain by using a conventional white cane,” Ye said. “The data segmentation method can also provide obstacle information such as an overhang obstacle or drop-off. The project’s hypothesis is that a single Flash LADAR sensor can solve blind navigation problems -- avoiding obstacles and way-finding. Thus it is possible to build portable navigational device.”

The term "way-finding" refers to how the blind move toward a destination. Finding waypoints, such as stairways, hallways, and the awareness of his or her position contribute to the goal to move from one point to another.

The NSF grant will involve Ye, two graduate students and a number of undergraduate students at UALR’s EIT college. The NSF grant will involve Ye, two graduate students and a number of undergraduate students at UALR’s EIT college.

The initial study that led to the grant was supported in part by UALR's Office of Research and Sponsored Programs, Arkansas Space Grant Consortium, Arkansas NASA EPSCoR Program, NISH, a nonprofit agency creating ;job opportunities for people with severe disabilities; the American Society for Engineering Education; and Office of Naval Research.

“We have Lion’s World Service for the Blind and Arkansas School for the Blind as our partners,” Ye said. “They will help us evaluate the devices and provide opinions to refine the devices during the project period.”

Throughout history, the blind and visually impaired have used canes, staffs -- even sighted people used sticks as traveling aids. From the biblical era shepherd’s staff to the dapper walking sticks of the 19th century, canes have been used as tools for traveling.

In the early 1920s, a British photographer blinded following an accident and uncomfortable with traffic around his home painted his walking stick white to help the sighted take notice of him.

In 1931, the Lion's Club International began a national program promoting the use of white canes for persons who are blind.

When the blind veterans of World War II returned to America, the form and the use of the white cane was further altered when Dr. Richard Hoover developed the "long cane" or "Hoover" method of cane travel.

These white canes are designed to be used as mobility devices and returned the cane to its original role as a tool for mobility, but maintained the symbolic role as an identifier of blind independence.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>