Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Creates ‘Smart Cane’ for Blind to ‘See‘

01.10.2010
In 1931, the Lion’s Club International began a national program promoting the use of white canes to help the blind “see.” Now, scientists at UALR -- University of Arkansas at Little Rock -- are turning to the organization to test a next generation “smart” cane. The device provides detail and dimension to enable the sightless to navigate in an a physical environment.

Dr. Cang Ye, associate professor of applied science in UALR’s Donaghey College of Engineering and Information Technology, recently received a nationally competitive research grant of $320,389 from the National Science Foundation’s Robust Intelligence Program to develop new computer vision methods and build portable blind navigational devices that may guide visually impaired people in unstructured environment.

Once the device is built, Ye will partner with rehabilitation specialists at Lion’s World Services for the Blind -- who’s headquarters is next door to the UALR campus -- and students at the Arkansas School for the Blind to help test the smart canes.

“There are no devices available that assist blind travelers in the way that Dr. Ye hopes the Smart cane will,” said Dr. Larry Dickerson, chief executive officer and president of Lions World Services for the Blind. “We are eager for him to develop a working prototype. We will evaluate its effectiveness and perhaps suggest refinements with the help of our clients who come from all over the United States and our experienced staff.”

Electronic white canes used by the blind have been around for several years. But Ye’s research hopes to vastly improved the “vision” with smart canes can provide the sightless.

“The science of the project is to devise computer vision methods that may enable the Portable Blind Navigational Devices (PBNDs),” Ye said.

Ye and his team of researchers will use Flash LADAR (laser detection and ranging) (LADAR) 3-dimensional imaging sensor to provide the blind a more detailed “picture” of a physical environment.

“We use a Flash LADAR 3D imaging sensor for perception,” he said. “The imaging sensor produces both intensity image and range image of its environment. Each pixel in the range image contains distance information of the corresponding pixel in the intensity image.”

His team has developed computer vision methods include an ego-motion estimation algorithm called VR-Odometry (VRO) and a 3D data segmentation method. They will be refined, validated through this project and their real-time implemention in the PBNDs will be achieved at the end of the project.

“The VRO estimates the sensor’s motion by simultaneously processing the intensity and range images. It will extract features in each two consecutive intensity images, match features of the two images, obtain the distance information of the matched features, and compute the change of the sensor’s position and orientation,” he said. “This method can provide ‘where am I?’ information to the blind.”

Electronic white canes used by the blind have been around for several years. But Ye’s research hopes to create computer software that can detail where a staircase or a doorway is located in a room; where a drop off in the floor exists or an overhead bulkhead can be found. The core technology is 3D data segmentation. Once the program is created, it can be installed in a portable “cane” and provide information orally to a sightless person, who then can know the lay of the land.

“This is crucial navigational information that is difficult to obtain by using a conventional white cane,” Ye said. “The data segmentation method can also provide obstacle information such as an overhang obstacle or drop-off. The project’s hypothesis is that a single Flash LADAR sensor can solve blind navigation problems -- avoiding obstacles and way-finding. Thus it is possible to build portable navigational device.”

The term "way-finding" refers to how the blind move toward a destination. Finding waypoints, such as stairways, hallways, and the awareness of his or her position contribute to the goal to move from one point to another.

The NSF grant will involve Ye, two graduate students and a number of undergraduate students at UALR’s EIT college. The NSF grant will involve Ye, two graduate students and a number of undergraduate students at UALR’s EIT college.

The initial study that led to the grant was supported in part by UALR's Office of Research and Sponsored Programs, Arkansas Space Grant Consortium, Arkansas NASA EPSCoR Program, NISH, a nonprofit agency creating ;job opportunities for people with severe disabilities; the American Society for Engineering Education; and Office of Naval Research.

“We have Lion’s World Service for the Blind and Arkansas School for the Blind as our partners,” Ye said. “They will help us evaluate the devices and provide opinions to refine the devices during the project period.”

Throughout history, the blind and visually impaired have used canes, staffs -- even sighted people used sticks as traveling aids. From the biblical era shepherd’s staff to the dapper walking sticks of the 19th century, canes have been used as tools for traveling.

In the early 1920s, a British photographer blinded following an accident and uncomfortable with traffic around his home painted his walking stick white to help the sighted take notice of him.

In 1931, the Lion's Club International began a national program promoting the use of white canes for persons who are blind.

When the blind veterans of World War II returned to America, the form and the use of the white cane was further altered when Dr. Richard Hoover developed the "long cane" or "Hoover" method of cane travel.

These white canes are designed to be used as mobility devices and returned the cane to its original role as a tool for mobility, but maintained the symbolic role as an identifier of blind independence.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>