Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Energy-Burning Brown Fat in Mice

31.07.2009
Researchers at Dana-Farber Cancer Institute have shown that they can engineer mouse and human cells to produce brown fat, a natural energy-burning type of fat that counteracts obesity. If such a strategy can be developed for use in people, the scientists say, it could open a novel approach to treating obesity and diabetes.

A team led by Bruce Spiegelman, PhD, has identified both parts of a molecular switch that normally causes some immature muscle cells in the embryo to become brown fat cells.

With this switch in hand, the scientists showed they could manipulate it to force other types of cells in the laboratory to produce brown fat, known as Brown Adipose Tissue (BAT). Their findings are being reported in the journal Nature on its Web site as an advanced online publication on July 29.

The scientists then transplanted these synthetic brown fat precursors, known as eBAT (engineered BAT), into adult mice to augment their innate stores of brown fat. Tests showed that the brown fat transplants were burning caloric energy at a high rate -- energy that otherwise would have been stored as fat in white adipose tissue.

"Since brown fat cells have very high capacity to dissipate excess energy and counteract obesity, eBAT has a very high potential for treating obesity," said Shingo Kajimura, PhD, lead author of the paper. "We are currently working on this."

Excess caloric energy in the diet is stored in white fat calls that pile up in the body, particularly in the thighs and abdomen. The accumulated fat content in overweight people puts stress on these cells, which give out signals that cause inflammation in body organs and the circulatory system, creating risks of heart disease and diabetes.

Brown fat, by contrast, works in an opposite fashion; it evolved to protect animals from cold conditions and prevent obesity. Brown fat cells are equipped with a large supply of mitochondria -- tiny organelles that use oxygen to burn sugar from the diet to generate heat, rather than store the energy as fat.

Scientists have long thought that brown fat was present in young animals and human newborns but virtually absent in human adults. Recently, however, researchers have used modern PET (positron emission tomography) scanners -- which detect tissue that is actively absorbing sugar -- to search for deposits of brown fat in adults. Such experiments have revealed unexpectedly large amounts of brown fat scattered through the neck and chest areas.

In 2007, Spiegelman's team, led by Patrick Seale, PhD, who is the second author of the new Nature paper, discovered a protein, PRDM16, that serves as a switch that determines whether immature muscle cells will develop into mature muscle cells or become brown fat cells.

But this was not the whole story. The scientists suspected that PRDM16 worked with another unknown protein to initiate brown fat development. This proved to be the case. In the new experiments, the Spiegelman group found that PRMD16 works in tandem with the protein C/EBP-beta, and only as a two-part unit are they sufficient to jump-start brown fat development in several types of cells.

To find out if the PRDM16-C/EBP-beta switch could change the identity of other types of cells, forcing them to become brown fat cells, the researchers used viruses to transfer the switch into embryonic mouse connective tissue cells called fibroblasts. They also installed the switch into adult mouse skin cells, and into human skin cells isolated from foreskins removed from newborns during circumcision.

In all three cases, the fibroblasts produced mature brown fat cells. The scientists then transplanted the cells into mice, where they produced brown fat tissue. PET scans confirmed that the new brown fat tissue was burning excess energy in the animals, as they should. The experiments did not test whether the extra brown fat actually protected the mice from becoming obese.

Spiegelman said the results "give a lot more credence" to efforts to manipulate the brown fat switch as a potential means of treating people with obesity and diabetes. One strategy would be to remove some tissue from the patient, add the PRDM16-C/EBP switch, and return it to the patient where it would manufacture additional brown fat.

A more conventional possibility would be to administer a drug to the patient that would ramp up the production of brown fat without the need for a transplant, said Spiegelman, who is also a professor of cell biology at Harvard Medical School. "If we can find a hormone that does that, it's reasonable to think that it might provide a direct anti-obesity treatment."

Other authors on the paper are Kazuishi Kubota, PhD, and Steven P. Gygi, PhD, of Harvard Medical School, and Elaine Lunsford and John V. Frangioni, MD, PhD, of Beth Israel Deaconess Medical Center.

The research was supported by grants from the National Institutes of Health and the Picower Foundation.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | Newswise Science News
Further information:
http://www.dana-farber.org

Further reports about: Energy-Burning Fat Medical Wellness Mice Nature Immunology PET scan PRDM16 fat cells fat tissue skin cell

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>