Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scarring cells revert to inactive state as liver heals

08.05.2012
Research with mice reveals possible strategy to reverse fibrosis in liver and other organs

An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, report that significant numbers of myofibroblasts – cells that produce the fibrous scarring in chronic liver injury – revert to an inactive phenotype as the liver heals. The discovery in mouse models could ultimately help lead to new human therapies for reversing fibrosis in the liver, and in other organs like the lungs and kidneys.

The work is published in the May 7, 2012 online Early Edition of the Proceedings of the National Academy of Sciences.

"The take-away message is two-fold," said David A. Brenner, MD, vice chancellor for Health Sciences, dean of the UC San Diego School of Medicine and senior author of the paper. "First, we've shown that liver fibrosis is markedly reversible and we now better understand how it happens. Second, we can start looking for ways to direct active myofibroblasts to stop producing scar, and become inactive. We can focus on developing drugs that promote cell change and regression. It raises the bar for prospective treatment tremendously."

Liver fibrosis is the 12th leading cause of death in the United States. It is the result of chronic liver injury caused by such agents as the hepatitis B and C viruses, alcoholic liver disease and non-alcoholic steatohepatitis. The condition is manifested by extensive scarring of liver tissue and the organ's progressive inability to filter body toxins. Liver fibrosis precedes the development of liver cancer. Often, the only treatment for end-stage liver fibrosis is an organ transplant.

Fibrosis begins when infectious agents or excessive alcohol consumption trigger activation of hepatic stellate cells (HSCs), which normally act as quiescent storage units for nutrients like vitamin A in the liver. Once activated, these HSCs acquire characteristics of another cell type called myofibroblasts, which are characterized by their abundant production of extracellular matrix proteins such as collagen. These proteins accumulate as scar tissue, rendering the organ progressively dysfunctional.

However, if the source of the liver injury is successfully treated or eliminated, the liver can repair itself. In part, this is due to the activated HSCs undergoing apoptosis (programmed cell death) and being removed by other cells. But UC San Diego scientists say that, in tests using a mouse model, as many as half of all activated HSCs persist. They do not die, but rather revert to an inactive phenotype during fibrotic regression.

"After one month of regression, these cells have stopped producing collagen. They've upregulated some of the genes associated with quiescence and returned to their normal location in the liver," said Tatiana Kisseleva, MD, PhD, an assistant research scientist and first author of the study.

It's not clear why these myofibroblasts survive. Also, scientists note the reverted myofibroblasts do not completely return to their original quiescent state. "They're still more susceptible to repetitive injury than original quiescent HSCs," said Kisseleva, who noted future tests will investigate whether additional reversion occurs with more time.

Kisseleva suggested the findings present another avenue for treating liver fibrosis, especially in possibly reverting fibrosis and cirrhosis, which accounts for roughly 27,000 deaths in the United States annually.

Fibrosis occurs in other organs as well, such as the kidneys and lungs, with comparable deadly effect. Recent studies indicate fibrotic reversibility in these organs as well. "Our findings are applicable to other fibrosing organs," said Kisseleva. "Instead of killing damaged cells, we might be able to de-activate them and revert them to healthy originals."

Co-authors of the study are Min Cong, Chunyan Jiang, Keiko Iwaisako, Brian Scott and Wolfgang Dillmann, Department of Medicine, UC San Diego; YongHan Paik, Department of Medicine, UC San Diego and Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea; David Scholten, Department of Medicine, UC San Diego and Department of Medicine III, University Hospital Aachen, Germany; Thomas Moore-Morris and Sylvia M. Evans, Skaggs School of Pharmacy and Pharmaceutical Science, UC San Diego; Hidekazu Tsukamoto, Keck School of Medicine, University of Southern California.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>