Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salamander skin peptide promotes quick and effective wound healing in mice

03.09.2014

New research in The FASEB Journal suggests that a short peptide called tylotoin exerts the promotion of wound healing with epidermal growth factor (EGF) in a murine model of a full thickness dermal wound

Move over antibiotic ointment, there might be a new salve to dominate medicine cabinets of the future, and it comes from an unlikely place—the lowly salamander. Salamanders may not be the cuddliest of animals, but they can regenerate lost limbs and achieve amazing recovery of seriously damaged body parts.

Now, a new report published in the September 2014 issue of The FASEB Journal, identifies a small protein (called a "peptide") from the skin of salamanders that may be the key to unlocking the secret of this amazing wound healing trick in humans.

"This research takes a step toward an understanding of the cellular and molecular events that underlie quick wound healing in the salamander by the discovery of a potential wound healing promoting peptide," said Ren Lai, Ph.D., a researcher involved in the work from the Kunming Institute of Zoology at the Chinese Academy of Sciences in Yunnan, China.

To make this discovery, Lai and colleagues collected skin extract from salamanders and separated it by gel filtration and high performance liquid chromatography. The skin component from salamanders was subjected to keratinocyte cell proliferation and endothelial cell tube formation assay to evaluate possible wound healing potential.

This component was further subjected to structure and functional analysis, which pointed toward a short peptide called tylotoin that contained 12 amino acid residues. This peptide was found to exert the ability to promote wound healing with epidermal growth factor (EGF) in a murine model of a full thickness dermal wound.

Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells and fibroblasts, resulting in accelerated re-epithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor beta1 and interleukin 6, which are essential in the wound healing response.

"Until now, rapid wound healing has been the stuff of superheroes and science fiction," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Scientists have always wondered how some 'lower' animals heal wounds that would be mortal to humans. Now, we are taking concrete steps to mimic this ancient – and forgotten – healing process in our own bodies."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is the world's most cited biology journal according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 120,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Lixian Mu, Jing Tang, Han Liu, Chuanbin Shen, Mingqiang Rong, Zhiye Zhang, and Ren Lai. A potential wound-healing-promoting peptide from salamander skin. FASEB J. September 2014 28:3919-3929; doi:10.1096/fj.13-248476 ; http://www.fasebj.org/content/28/9/3919.abstract

Cody Mooneyhan | Eurek Alert!

Further reports about: Biology FASEB Salamander animals endothelial healing humans interleukin proliferation skin wound

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>