Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salamander skin peptide promotes quick and effective wound healing in mice

03.09.2014

New research in The FASEB Journal suggests that a short peptide called tylotoin exerts the promotion of wound healing with epidermal growth factor (EGF) in a murine model of a full thickness dermal wound

Move over antibiotic ointment, there might be a new salve to dominate medicine cabinets of the future, and it comes from an unlikely place—the lowly salamander. Salamanders may not be the cuddliest of animals, but they can regenerate lost limbs and achieve amazing recovery of seriously damaged body parts.

Now, a new report published in the September 2014 issue of The FASEB Journal, identifies a small protein (called a "peptide") from the skin of salamanders that may be the key to unlocking the secret of this amazing wound healing trick in humans.

"This research takes a step toward an understanding of the cellular and molecular events that underlie quick wound healing in the salamander by the discovery of a potential wound healing promoting peptide," said Ren Lai, Ph.D., a researcher involved in the work from the Kunming Institute of Zoology at the Chinese Academy of Sciences in Yunnan, China.

To make this discovery, Lai and colleagues collected skin extract from salamanders and separated it by gel filtration and high performance liquid chromatography. The skin component from salamanders was subjected to keratinocyte cell proliferation and endothelial cell tube formation assay to evaluate possible wound healing potential.

This component was further subjected to structure and functional analysis, which pointed toward a short peptide called tylotoin that contained 12 amino acid residues. This peptide was found to exert the ability to promote wound healing with epidermal growth factor (EGF) in a murine model of a full thickness dermal wound.

Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells and fibroblasts, resulting in accelerated re-epithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor beta1 and interleukin 6, which are essential in the wound healing response.

"Until now, rapid wound healing has been the stuff of superheroes and science fiction," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Scientists have always wondered how some 'lower' animals heal wounds that would be mortal to humans. Now, we are taking concrete steps to mimic this ancient – and forgotten – healing process in our own bodies."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is the world's most cited biology journal according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 120,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Lixian Mu, Jing Tang, Han Liu, Chuanbin Shen, Mingqiang Rong, Zhiye Zhang, and Ren Lai. A potential wound-healing-promoting peptide from salamander skin. FASEB J. September 2014 28:3919-3929; doi:10.1096/fj.13-248476 ; http://www.fasebj.org/content/28/9/3919.abstract

Cody Mooneyhan | Eurek Alert!

Further reports about: Biology FASEB Salamander animals endothelial healing humans interleukin proliferation skin wound

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>