Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New safety test predicts reactions to novel drugs and cosmetics

28.05.2013
A simple lab-based skin test which eliminates the risk of adverse reactions to new drugs, cosmetics and household chemicals has been developed by a Newcastle University, UK team.

It uses real human skin and immune cells to show any reaction such as a rash or blistering indicating a wider immune response within the body.

The development is timely as it offers a reliable alternative for the cosmetic industry as a ban on the sale of any cosmetic product tested on animals came into effect across Europe in March.

Professor Anne Dickinson from the Institute of Cellular Medicine recently presented the technology at the In-Vitro Testing Industrial Platform (IVTIP) conference in Brussels. She said: "This skin assay offers an accurate and rapid alternative to animal testing and provides the bridge between the laboratory tests for novel drugs and the first stage of clinical trials in humans.

"It is accurate and faster than anything currently around and can save companies time and resources. The test identifies drugs or products which are likely to cause a reaction or just not work effectively in humans."

The test called Skimune™, which is trademarked and has a patent pending, has been successfully tested by a number of large pharmaceutical companies on drugs in development and provides a reliable result within two weeks.

By revealing skin sensitisation or an adverse reaction that may not be identified by use of an animal or computer model, the assay can provide vital information which will allow a drug company to make informed decisions earlier saving significant development costs.

Professor Dickinson said: "We've already shown this works as a way of testing new drugs for adverse immune reactions that can't be identified when tested in animal models."

Working with the National Institute of Biological Standards and Control (NIBSC) the Newcastle team have been testing monoclonal antibodies for adverse responses. Professor Dickinson added: "Our Skimune™ test would have predicted the terrible outcome at Northwick Park in 2006. Then six men taking part in a clinical trial had severe reactions to a monoclonal antibody resulting in organ failure. Previous laboratory and animal research gave no indication that this was likely to occur.

"Our test would have picked up the risk because it is a skin-based model of the human immune response."

The skin assay has been developed using cells isolated from blood samples from a range of healthy volunteers. Differentiated into dendritic cells which activate the T-cells, these in turn create a cytokine storm. Useful for fighting infection, if this immune response goes unchecked it can be extremely harmful to the individual. Skimune™ provides a histology skin damage read out enabling the severity and potency of reaction to be gauged.

Professor Richard Stebbings, principle scientist at NIBSC welcomed the development adding: "This assay offers a valuable alternative to animal models, used for safety testing of biological medicines and which are often poorly predictive of human responses."

Professor Anne Dickinson has spent 20 years working to understand how we prevent the body rejecting donor tissue such as bone marrow. This technology has been developed from a skin explant model for predicting a potentially serious complication of bone marrow transplantation, 'graft versus host' disease - a common complication following the transplant.

It has been supported by the UK's innovation agency with a Technology Strategy Board grant for the development of a prototype.

As well as patent pending the Skimune™ test, the Newcastle University team have set up a company Alcyomics Limited which aims to take the technology forward to offer personalised medicine, enabling an individual to be tested for drug responses.

More information on the technology can be found on http://www.alcyomics.com.

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk
http://www.alcyomics.com

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>