Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New safety test predicts reactions to novel drugs and cosmetics

28.05.2013
A simple lab-based skin test which eliminates the risk of adverse reactions to new drugs, cosmetics and household chemicals has been developed by a Newcastle University, UK team.

It uses real human skin and immune cells to show any reaction such as a rash or blistering indicating a wider immune response within the body.

The development is timely as it offers a reliable alternative for the cosmetic industry as a ban on the sale of any cosmetic product tested on animals came into effect across Europe in March.

Professor Anne Dickinson from the Institute of Cellular Medicine recently presented the technology at the In-Vitro Testing Industrial Platform (IVTIP) conference in Brussels. She said: "This skin assay offers an accurate and rapid alternative to animal testing and provides the bridge between the laboratory tests for novel drugs and the first stage of clinical trials in humans.

"It is accurate and faster than anything currently around and can save companies time and resources. The test identifies drugs or products which are likely to cause a reaction or just not work effectively in humans."

The test called Skimune™, which is trademarked and has a patent pending, has been successfully tested by a number of large pharmaceutical companies on drugs in development and provides a reliable result within two weeks.

By revealing skin sensitisation or an adverse reaction that may not be identified by use of an animal or computer model, the assay can provide vital information which will allow a drug company to make informed decisions earlier saving significant development costs.

Professor Dickinson said: "We've already shown this works as a way of testing new drugs for adverse immune reactions that can't be identified when tested in animal models."

Working with the National Institute of Biological Standards and Control (NIBSC) the Newcastle team have been testing monoclonal antibodies for adverse responses. Professor Dickinson added: "Our Skimune™ test would have predicted the terrible outcome at Northwick Park in 2006. Then six men taking part in a clinical trial had severe reactions to a monoclonal antibody resulting in organ failure. Previous laboratory and animal research gave no indication that this was likely to occur.

"Our test would have picked up the risk because it is a skin-based model of the human immune response."

The skin assay has been developed using cells isolated from blood samples from a range of healthy volunteers. Differentiated into dendritic cells which activate the T-cells, these in turn create a cytokine storm. Useful for fighting infection, if this immune response goes unchecked it can be extremely harmful to the individual. Skimune™ provides a histology skin damage read out enabling the severity and potency of reaction to be gauged.

Professor Richard Stebbings, principle scientist at NIBSC welcomed the development adding: "This assay offers a valuable alternative to animal models, used for safety testing of biological medicines and which are often poorly predictive of human responses."

Professor Anne Dickinson has spent 20 years working to understand how we prevent the body rejecting donor tissue such as bone marrow. This technology has been developed from a skin explant model for predicting a potentially serious complication of bone marrow transplantation, 'graft versus host' disease - a common complication following the transplant.

It has been supported by the UK's innovation agency with a Technology Strategy Board grant for the development of a prototype.

As well as patent pending the Skimune™ test, the Newcastle University team have set up a company Alcyomics Limited which aims to take the technology forward to offer personalised medicine, enabling an individual to be tested for drug responses.

More information on the technology can be found on http://www.alcyomics.com.

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk
http://www.alcyomics.com

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>