Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers, UMDNJ Research Provides Unprecedented Insight into Fighting Viruses

30.09.2011
Researchers at Rutgers and UMDNJ-Robert Wood Johnson Medical School have determined the structure of a protein that is the first line of defense in fighting viral infections including influenza, hepatitis C, West Nile, rabies, and measles.

Principal investigators of the study, “Structural basis of RNA recognition and activation by innate immune receptor RIG-I,” chosen for advanced online publication in Nature, say the research is key in the development of broad-based drug therapies to combat viral infections.

“Understanding innate immunity to viral infections is crucial to developing drugs that can fight viruses or control inflammation,” said Joseph Marcotrigiano, assistant professor of chemistry and chemical biology at Rutgers who along with Smita Patel, professor of biochemistry at Robert Wood Johnson Medical School, are principal investigators on the newly released study. “Having this foundation is extremely important.”

RIG-I is a receptor protein that recognizes differences in molecular patterns in order to differentiate viral RNA – the process during which virus particles makes new copies of themselves within a host cell and can then infect other cells – from cellular RNA. What researchers discovered is that viral RNA, as opposed to single-stranded cellular RNA, is a double-stranded structure. This double-stranded difference is the reason the RIG-I protein recognizes it and initiates a signal to induce anti-immune and anti-inflammatory defenses within the cell.

Prior to this research, there was little understanding on how RIG-I protein recognized the viral infections, said Patel. Knowing that it is due to the double-stranded molecular structure of the viral RNA is critical because, he said, "a failure of RIG-I to identify viral RNA can lead to alterations of the cell, including cell death, inflammation, autoimmune diseases, and cancer."

This is a first step, the scientists say, in helping to develop therapies that interfere with a broad variety of viral infections – a major breakthrough for millions of people who get sick from viruses which cannot be treated effectively by current medication.

“This work provides unprecedented insights on the molecular mechanism of viral RNA recognition by RIG-I,” said Barbara Gerratana, who oversees enzyme catalysis grants at the National Institute of General Medical Sciences of the National Institutes of Health. “As a result, we have a deeper understanding of how the human body fights viral infections and a structural basis of the development of new anti-viral therapeutics.”

Media Contact: Robin Lally
732-932-7084, ext. 652
E-mail: rlally@ur.rutgers.edu

Robin Lally | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>