Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers, UMDNJ Research Provides Unprecedented Insight into Fighting Viruses

30.09.2011
Researchers at Rutgers and UMDNJ-Robert Wood Johnson Medical School have determined the structure of a protein that is the first line of defense in fighting viral infections including influenza, hepatitis C, West Nile, rabies, and measles.

Principal investigators of the study, “Structural basis of RNA recognition and activation by innate immune receptor RIG-I,” chosen for advanced online publication in Nature, say the research is key in the development of broad-based drug therapies to combat viral infections.

“Understanding innate immunity to viral infections is crucial to developing drugs that can fight viruses or control inflammation,” said Joseph Marcotrigiano, assistant professor of chemistry and chemical biology at Rutgers who along with Smita Patel, professor of biochemistry at Robert Wood Johnson Medical School, are principal investigators on the newly released study. “Having this foundation is extremely important.”

RIG-I is a receptor protein that recognizes differences in molecular patterns in order to differentiate viral RNA – the process during which virus particles makes new copies of themselves within a host cell and can then infect other cells – from cellular RNA. What researchers discovered is that viral RNA, as opposed to single-stranded cellular RNA, is a double-stranded structure. This double-stranded difference is the reason the RIG-I protein recognizes it and initiates a signal to induce anti-immune and anti-inflammatory defenses within the cell.

Prior to this research, there was little understanding on how RIG-I protein recognized the viral infections, said Patel. Knowing that it is due to the double-stranded molecular structure of the viral RNA is critical because, he said, "a failure of RIG-I to identify viral RNA can lead to alterations of the cell, including cell death, inflammation, autoimmune diseases, and cancer."

This is a first step, the scientists say, in helping to develop therapies that interfere with a broad variety of viral infections – a major breakthrough for millions of people who get sick from viruses which cannot be treated effectively by current medication.

“This work provides unprecedented insights on the molecular mechanism of viral RNA recognition by RIG-I,” said Barbara Gerratana, who oversees enzyme catalysis grants at the National Institute of General Medical Sciences of the National Institutes of Health. “As a result, we have a deeper understanding of how the human body fights viral infections and a structural basis of the development of new anti-viral therapeutics.”

Media Contact: Robin Lally
732-932-7084, ext. 652
E-mail: rlally@ur.rutgers.edu

Robin Lally | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>