Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Routine breast cancer biopsy might predict lymph node cancer spread

19.04.2010
Predicting breast cancer spread from a sentinel lymph node removed during surgery is a hit or miss affair, say researchers: there are still many false negatives, which means the node, when analyzed under a microscope, appears clean of cancer cells, but metastasis can still occur in the patient. The sentinel node is the first lymph node in the axilla that cancer spreads to.

Now, researchers from Georgetown Lombardi Comprehensive Center say that they have clues to molecular markers on breast tumors that may predict which cancers will metastasize to the lymph node system. Details of the study will be presented at the AACR 101st Annual Meeting 2010.

In a pilot study comparing genomic alterations in both breast cancer cells and sentinel lymph nodes removed from 15 patients whose cancer spread to the lymph nodes, researchers found genes that were altered (amplified or deleted) in both samples. These alterations affected genes that function as either oncogenes or tumor suppressors. The final goal is to be able to identify, at the time of the diagnosis, when a patient has a routine biopsy of their tumor, who is at higher risk for development of lymph node metastasis, says Luciane Cavalli, PhD, an assistant professor of oncology at Lombardi.

"To our knowledge, very few studies have looked specifically for genomic alterations in sentinel nodes in comparison to the primary tumor from the same patient. If we find markers that can be significantly associated with patients that develop axillary metastasis, we can check for these markers at an early stage of the cancer management, before axillary lymph node metastasis develops" says Cavalli. "That will give physicians a chance to treat what is otherwise an unseen metastasis."

Currently, a sentinel lymph node is removed when a patient undergoes surgery to remove breast tumors, and the node is examined for evidence of cancer cells while the operation is in progress. If these malignant cells are seen, additional nodes in the axilla are removed, Cavalli says. "This procedure is performed during the surgery, and the methods currently used to look for tumor cells in these nodes are not ultra sensitive, and may therefore miss these malignant cells especially in the case of micrometastasis."

Cavalli and her team first screened the genomes of cells from both tumors and nodes from the same patient using comparative genome hybridization (CGH), and found that most of the genomic regions affected were similar in both of the samples. . They then used microarray technology (array-CGH) to identify the genes altered in these regions and found several that were altered in patient lymph nodes and tumors. Some of these genes are well known, such as the growth promoting gene her2neu, and the tumor suppressor BRCA1.

"It differed between patients – in some, BRCA1 was missing in both samples, in others, Her2neu or other genes were amplified," Cavalli said.

The researchers are now validating their results in other patient samples. "If we can use these genomic markers to identify tumor cells in the sentinel lymph node to reduce the false negative rates that now exist in sentinel node biopsy, we can advance one step forward in patient care," Cavalli says.

Cavalli reports no potential financial disclosures.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through Georgetown's affiliation with MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO), home to 60 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>