Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Routine breast cancer biopsy might predict lymph node cancer spread

Predicting breast cancer spread from a sentinel lymph node removed during surgery is a hit or miss affair, say researchers: there are still many false negatives, which means the node, when analyzed under a microscope, appears clean of cancer cells, but metastasis can still occur in the patient. The sentinel node is the first lymph node in the axilla that cancer spreads to.

Now, researchers from Georgetown Lombardi Comprehensive Center say that they have clues to molecular markers on breast tumors that may predict which cancers will metastasize to the lymph node system. Details of the study will be presented at the AACR 101st Annual Meeting 2010.

In a pilot study comparing genomic alterations in both breast cancer cells and sentinel lymph nodes removed from 15 patients whose cancer spread to the lymph nodes, researchers found genes that were altered (amplified or deleted) in both samples. These alterations affected genes that function as either oncogenes or tumor suppressors. The final goal is to be able to identify, at the time of the diagnosis, when a patient has a routine biopsy of their tumor, who is at higher risk for development of lymph node metastasis, says Luciane Cavalli, PhD, an assistant professor of oncology at Lombardi.

"To our knowledge, very few studies have looked specifically for genomic alterations in sentinel nodes in comparison to the primary tumor from the same patient. If we find markers that can be significantly associated with patients that develop axillary metastasis, we can check for these markers at an early stage of the cancer management, before axillary lymph node metastasis develops" says Cavalli. "That will give physicians a chance to treat what is otherwise an unseen metastasis."

Currently, a sentinel lymph node is removed when a patient undergoes surgery to remove breast tumors, and the node is examined for evidence of cancer cells while the operation is in progress. If these malignant cells are seen, additional nodes in the axilla are removed, Cavalli says. "This procedure is performed during the surgery, and the methods currently used to look for tumor cells in these nodes are not ultra sensitive, and may therefore miss these malignant cells especially in the case of micrometastasis."

Cavalli and her team first screened the genomes of cells from both tumors and nodes from the same patient using comparative genome hybridization (CGH), and found that most of the genomic regions affected were similar in both of the samples. . They then used microarray technology (array-CGH) to identify the genes altered in these regions and found several that were altered in patient lymph nodes and tumors. Some of these genes are well known, such as the growth promoting gene her2neu, and the tumor suppressor BRCA1.

"It differed between patients – in some, BRCA1 was missing in both samples, in others, Her2neu or other genes were amplified," Cavalli said.

The researchers are now validating their results in other patient samples. "If we can use these genomic markers to identify tumor cells in the sentinel lymph node to reduce the false negative rates that now exist in sentinel node biopsy, we can advance one step forward in patient care," Cavalli says.

Cavalli reports no potential financial disclosures.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area. For more information, go to

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through Georgetown's affiliation with MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO), home to 60 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>