Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roman York skeleton could be early TB victim

17.09.2008
The skeleton of a man discovered by archaeologists in a shallow grave on the site of the University of York’s campus expansion could be that of one of Britain’s earliest victims of tuberculosis.

Radiocarbon dating suggests that the man died in the fourth century. He was interred in a shallow scoop in a flexed position, on his left side.

The man, aged 26-35 years, suffered from iron deficiency anaemia during childhood and at 162 centimetres (5ft 4in), was a shorter height than average for Roman males.

The first known case of TB in Britain is from the Iron Age (300 BC) but cases in the Roman period are fairly rare, and largely confined to the southern half of England. TB is most frequent from the 12th century AD in England when people were living in urban environments. So the skeleton may provide crucial evidence for the origin and development of the disease in this country.

The remains were discovered during archaeological investigations on the site of the University’s £500 million expansion at Heslington East. Archaeologists unearthed the skeleton close to the perimeter of the remains of a late-Roman masonry building discovered on the site, close to the route of an old Roman road between York and Barton-on-Humber.

The burial site is on part of the campus that will not be built on. The University is developing plans for community archaeology and education visits once the investigations are complete.

Detailed analysis of the skeleton by Malin Holst, of York Osteoarchaeology Ltd, revealed that a likely cause of death was tuberculosis which affected the man’s spine and pelvis. She says that it is possible that he contracted the disease as a child from infected meat or milk from cattle, but equally the infection could have been inhaled into the lungs. The disease then lay dormant until adulthood when the secondary phase of the disease took its toll.

Heslington East Fieldwork Officer Cath Neal, of the University’s Department of Archaeology, said: “This was a remarkable find and detailed study of this skeleton will provide us with important clues about the emergence of tuberculosis in late-Roman Britain, but also information about what life was like in York more than 1,500 years ago.

“A burial such as this, close to living quarters, is unusual for this period when most burials were in formal cemeteries. It is possible that the man was buried here because the tuberculosis infection was so rare at the time, and people were reluctant to transport the body any distance.”

Malin Holst added: “There were signs of muscular trauma and strong muscle attachments indicating that the individual undertook repeated physical activity while he was in good health. There was some intensive wear and chipping on his front teeth which may have been the result of repeated or habitual activity. There was evidence for infection of the bone in both lower limbs but this appeared to be healing at death.”

Investigation of the remains is continuing -- Professor Charlotte Roberts, of Durham University, with Professor Terry Brown at Manchester University, is now studying DNA from the skeleton as part of National Environmental Research Council funded research into the origin, evolution and spread of the bacteria that causes TB in Britain and parts of Europe.

David Garner | alfa
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/admin/presspr/pressreleases/campusskeleton.htm

Further reports about: Iron Age TB victim Tuberculosis bacteria radiocarbon

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>