Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice University seniors automate process of lengthening children’s limbs

Another day, another four turns of the screw. That’s just a part of life for people, primarily children, undergoing the long and difficult process of distraction osteogenesis, a method to correct bone deformities that leave one limb shorter than the other.

A team of Rice University undergraduates has invented a device they hope will make the process safer and easier.

In collaboration with Shriners Hospital for Children in Houston, the students came up with “LinDi,” a self-adjusting, automated linear distractor. It eliminates manual manipulation of the screw with a motorized process that makes the gradual growth of new bone a more natural process. And for the first time in such a device, they have built in a force-feedback loop that protects fragile tissues and nerves from being overstressed.

To correct deformities suffered by as many as 10 million children due to trauma, infection or congenital causes, surgeons break a bone and apply a distractor that stretches the bone as it heals and gently nudges the arm or leg to a more appropriate length.

The distractor incorporates long pins sunk right into the bone on either side of the surgical break. As the bone heals, but before it sets, the patient uses an Allen wrench to give the drive screw a quarter turn four times a day and push the pins further apart a tiny bit at a time.

That’s inconvenient, even risky if a child or parent forgets to make the adjustment, said Rice mechanical engineering student Raquel Kahn. And wearing the bulky brace is no treat, either.

Team members Kahn, Alvin Chou, Mario Gonzalez, Stephanie Herkes and Elaine Wong took LinDi on as their senior design capstone project at the behest of Gloria Gogola, an orthopedic hand and upper-extremity surgeon at Shriners who specializes in pediatrics.

“The process of limb lengthening — essentially creating a localized mini-growth spurt — works well for bones, but is very hard on the soft tissues such as nerves and blood vessels,” Gogola said. “This team has done an outstanding job of designing a creative solution. Their device not only protects the soft tissues, it will ultimately speed up the entire process.”

“The problem with the current device is that there’s a lot of room for error,” Kahn said. “You can imagine that one might forget to turn it once, or turn it the wrong way, or turn it too much. And a lot of problems can arise in the soft tissue and the nerves surrounding the bone. That’s the limiting factor of this process. But LinDi implements a motor to make the distraction process nearly continuous.”

Kahn said the motorized, battery-operated LinDi adjusts the device almost 1,000 times every day, “so the process is more gradual and continuous, similar to actual bone growth.”

Working at Rice’s Oshman Engineering Design Kitchen (OEDK), the students had access to all the materials and expertise they needed to conceptualize, build and test a prototype even while completing their coursework. “We’re teaching students the importance of prototyping as early as possible,” said Marcia O’Malley, an associate professor of mechanical engineering and materials science and the team’s faculty adviser. “Even if it’s cardboard and tape, they’re able to visualize a project early in the process.

“One of the big features of this project is the force sensor,” she said. “If the loads on the tissue are too high, the device shuts the motor off.” O’Malley said early tests with strain gauges paid off in the team’s level of confidence when the time came to build a working prototype. “The great thing about the OEDK is that everything is so accessible here. I could say, ‘Well, that team over there is working with strain gauges. Go talk to them and find out how they’re doing it,” she said.

Current patients wear distractors for as long as it takes to complete the process, typically stretching a limb for two to four months, Kahn said. Then they leave the device on for six more weeks, like a cast, while the bone sets. Each of the Rice students wore a standard distractor (minus the bone-drilling part) for 24 hours to get a feel for what patients endure. “The hardest part was we kept banging into things,” Gonzalez said.

But through interviews with Gogola’s patients, they learned how tough children are. “We were really concerned, because it looks like a pretty scary, uncomfortable process,” Herkes said. “It looks like a torture device. We asked one little boy who had it on his humerus his No. 1 complaint and he said, ‘My school uniform is red, and it doesn’t match.’”

Through Shriners, the team got the opportunity to perform short-term animal testing that “helped us work out some of the kinks we weren’t aware of in the device,” Herkes said.

“We’ve gotten some nice results,” Kahn added. “Our device is doing what we want it to do.”

Though the students are about to graduate, they expect another team to continue development of the LinDi. One goal will be to make the device less bulky, and therefore curtail wear and tear on both the distractor and the patient.

David Ruth | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>