Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice University seniors automate process of lengthening children’s limbs

24.04.2012
Another day, another four turns of the screw. That’s just a part of life for people, primarily children, undergoing the long and difficult process of distraction osteogenesis, a method to correct bone deformities that leave one limb shorter than the other.

A team of Rice University undergraduates has invented a device they hope will make the process safer and easier.

In collaboration with Shriners Hospital for Children in Houston, the students came up with “LinDi,” a self-adjusting, automated linear distractor. It eliminates manual manipulation of the screw with a motorized process that makes the gradual growth of new bone a more natural process. And for the first time in such a device, they have built in a force-feedback loop that protects fragile tissues and nerves from being overstressed.

To correct deformities suffered by as many as 10 million children due to trauma, infection or congenital causes, surgeons break a bone and apply a distractor that stretches the bone as it heals and gently nudges the arm or leg to a more appropriate length.

The distractor incorporates long pins sunk right into the bone on either side of the surgical break. As the bone heals, but before it sets, the patient uses an Allen wrench to give the drive screw a quarter turn four times a day and push the pins further apart a tiny bit at a time.

That’s inconvenient, even risky if a child or parent forgets to make the adjustment, said Rice mechanical engineering student Raquel Kahn. And wearing the bulky brace is no treat, either.

Team members Kahn, Alvin Chou, Mario Gonzalez, Stephanie Herkes and Elaine Wong took LinDi on as their senior design capstone project at the behest of Gloria Gogola, an orthopedic hand and upper-extremity surgeon at Shriners who specializes in pediatrics.

“The process of limb lengthening — essentially creating a localized mini-growth spurt — works well for bones, but is very hard on the soft tissues such as nerves and blood vessels,” Gogola said. “This team has done an outstanding job of designing a creative solution. Their device not only protects the soft tissues, it will ultimately speed up the entire process.”

“The problem with the current device is that there’s a lot of room for error,” Kahn said. “You can imagine that one might forget to turn it once, or turn it the wrong way, or turn it too much. And a lot of problems can arise in the soft tissue and the nerves surrounding the bone. That’s the limiting factor of this process. But LinDi implements a motor to make the distraction process nearly continuous.”

Kahn said the motorized, battery-operated LinDi adjusts the device almost 1,000 times every day, “so the process is more gradual and continuous, similar to actual bone growth.”

Working at Rice’s Oshman Engineering Design Kitchen (OEDK), the students had access to all the materials and expertise they needed to conceptualize, build and test a prototype even while completing their coursework. “We’re teaching students the importance of prototyping as early as possible,” said Marcia O’Malley, an associate professor of mechanical engineering and materials science and the team’s faculty adviser. “Even if it’s cardboard and tape, they’re able to visualize a project early in the process.

“One of the big features of this project is the force sensor,” she said. “If the loads on the tissue are too high, the device shuts the motor off.” O’Malley said early tests with strain gauges paid off in the team’s level of confidence when the time came to build a working prototype. “The great thing about the OEDK is that everything is so accessible here. I could say, ‘Well, that team over there is working with strain gauges. Go talk to them and find out how they’re doing it,” she said.

Current patients wear distractors for as long as it takes to complete the process, typically stretching a limb for two to four months, Kahn said. Then they leave the device on for six more weeks, like a cast, while the bone sets. Each of the Rice students wore a standard distractor (minus the bone-drilling part) for 24 hours to get a feel for what patients endure. “The hardest part was we kept banging into things,” Gonzalez said.

But through interviews with Gogola’s patients, they learned how tough children are. “We were really concerned, because it looks like a pretty scary, uncomfortable process,” Herkes said. “It looks like a torture device. We asked one little boy who had it on his humerus his No. 1 complaint and he said, ‘My school uniform is red, and it doesn’t match.’”

Through Shriners, the team got the opportunity to perform short-term animal testing that “helped us work out some of the kinks we weren’t aware of in the device,” Herkes said.

“We’ve gotten some nice results,” Kahn added. “Our device is doing what we want it to do.”

Though the students are about to graduate, they expect another team to continue development of the LinDi. One goal will be to make the device less bulky, and therefore curtail wear and tear on both the distractor and the patient.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2012/04/20/lindi-a-stretch-for-student-engineers/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>