Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice University seniors automate process of lengthening children’s limbs

24.04.2012
Another day, another four turns of the screw. That’s just a part of life for people, primarily children, undergoing the long and difficult process of distraction osteogenesis, a method to correct bone deformities that leave one limb shorter than the other.

A team of Rice University undergraduates has invented a device they hope will make the process safer and easier.

In collaboration with Shriners Hospital for Children in Houston, the students came up with “LinDi,” a self-adjusting, automated linear distractor. It eliminates manual manipulation of the screw with a motorized process that makes the gradual growth of new bone a more natural process. And for the first time in such a device, they have built in a force-feedback loop that protects fragile tissues and nerves from being overstressed.

To correct deformities suffered by as many as 10 million children due to trauma, infection or congenital causes, surgeons break a bone and apply a distractor that stretches the bone as it heals and gently nudges the arm or leg to a more appropriate length.

The distractor incorporates long pins sunk right into the bone on either side of the surgical break. As the bone heals, but before it sets, the patient uses an Allen wrench to give the drive screw a quarter turn four times a day and push the pins further apart a tiny bit at a time.

That’s inconvenient, even risky if a child or parent forgets to make the adjustment, said Rice mechanical engineering student Raquel Kahn. And wearing the bulky brace is no treat, either.

Team members Kahn, Alvin Chou, Mario Gonzalez, Stephanie Herkes and Elaine Wong took LinDi on as their senior design capstone project at the behest of Gloria Gogola, an orthopedic hand and upper-extremity surgeon at Shriners who specializes in pediatrics.

“The process of limb lengthening — essentially creating a localized mini-growth spurt — works well for bones, but is very hard on the soft tissues such as nerves and blood vessels,” Gogola said. “This team has done an outstanding job of designing a creative solution. Their device not only protects the soft tissues, it will ultimately speed up the entire process.”

“The problem with the current device is that there’s a lot of room for error,” Kahn said. “You can imagine that one might forget to turn it once, or turn it the wrong way, or turn it too much. And a lot of problems can arise in the soft tissue and the nerves surrounding the bone. That’s the limiting factor of this process. But LinDi implements a motor to make the distraction process nearly continuous.”

Kahn said the motorized, battery-operated LinDi adjusts the device almost 1,000 times every day, “so the process is more gradual and continuous, similar to actual bone growth.”

Working at Rice’s Oshman Engineering Design Kitchen (OEDK), the students had access to all the materials and expertise they needed to conceptualize, build and test a prototype even while completing their coursework. “We’re teaching students the importance of prototyping as early as possible,” said Marcia O’Malley, an associate professor of mechanical engineering and materials science and the team’s faculty adviser. “Even if it’s cardboard and tape, they’re able to visualize a project early in the process.

“One of the big features of this project is the force sensor,” she said. “If the loads on the tissue are too high, the device shuts the motor off.” O’Malley said early tests with strain gauges paid off in the team’s level of confidence when the time came to build a working prototype. “The great thing about the OEDK is that everything is so accessible here. I could say, ‘Well, that team over there is working with strain gauges. Go talk to them and find out how they’re doing it,” she said.

Current patients wear distractors for as long as it takes to complete the process, typically stretching a limb for two to four months, Kahn said. Then they leave the device on for six more weeks, like a cast, while the bone sets. Each of the Rice students wore a standard distractor (minus the bone-drilling part) for 24 hours to get a feel for what patients endure. “The hardest part was we kept banging into things,” Gonzalez said.

But through interviews with Gogola’s patients, they learned how tough children are. “We were really concerned, because it looks like a pretty scary, uncomfortable process,” Herkes said. “It looks like a torture device. We asked one little boy who had it on his humerus his No. 1 complaint and he said, ‘My school uniform is red, and it doesn’t match.’”

Through Shriners, the team got the opportunity to perform short-term animal testing that “helped us work out some of the kinks we weren’t aware of in the device,” Herkes said.

“We’ve gotten some nice results,” Kahn added. “Our device is doing what we want it to do.”

Though the students are about to graduate, they expect another team to continue development of the LinDi. One goal will be to make the device less bulky, and therefore curtail wear and tear on both the distractor and the patient.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2012/04/20/lindi-a-stretch-for-student-engineers/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>