Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewiring DNA circuitry could help treat asthma

05.07.2012
Reprogramming asthma-promoting immune cells in mice diminishes airway damage and inflammation, and could potentially lead to new treatments for people with asthma, researchers have found.
The researchers were able to reprogram the asthma-promoting cells (called Th2 (T-helper 2) cells) after identifying an enzyme that modifies the DNA of these cells. The enzyme could be a target for the development of new treatments for chronic inflammatory diseases, in particular allergic asthma, caused by an excess of Th2 cells.

Walter and Eliza Hall Institute researcher Dr Rhys Allan led the research while working at Institut Curie, Paris. The research team from Institut Curie, National Centre for Scientific Research (CNRS), France, National Institute of Health and Medical Research (INSERM), France, and Montpellier Cancer Research Institute published the study today in the journal Nature.

Dr Allan said the research team discovered that the enzyme Suv39h1 could switch off genes to control the function of Th2 cells, which are key to the allergic response.

“Th2 cells have an important function in the immune response, but they also play a significant role in diseases such as allergic asthma,” Dr Allan said. “People with asthma have too many Th2 cells, which produce chemical signals that inflame and damage the upper airways. In this study, we discovered that the Suv39h1 enzyme plays a critical role in programming these asthma-promoting cells, making it a potential target for new therapies to treat asthma.”

More than two million Australians have asthma – approximately one in 10 people – and the disease is even more common among Indigenous Australians. The prevalence of asthma in children in Australia is among the highest in the world.

Dr Allan said the Suv39h1 enzyme was part of the ‘epigenetic circuitry’ of Th2 cells.

“Epigenetics refers to changes or modifications in the DNA that alter how genes are switched on and off, without changing the fundamental DNA sequence. Suv39h1 effectively ‘tags’ the DNA to tell the cells which genes they need to switch on or off to promote an allergic response.”

Using agents that inhibit Suv39h1 could destabilise Th2 cells in people who have an excess of these asthma-promoting cells so they no longer cause inflammation, Dr Allan said.

“We had the idea that erasing these epigenetic tags could ‘short-circuit’ the asthma-promoting Th2 cells and diminish the inflammatory immune response. And, in fact, in mouse models of allergic asthma, blocking this pathway with an inhibitory compound did reduce allergy-related airway damage. Ultimately, our results have identified a potential target for therapeutic intervention in asthma and potentially other Th2-mediated inflammatory diseases, which could improve outcomes for patients,” Dr Allan said.

Dr Allan is continuing to study the epigenetic circuitry of asthma-promoting immune cells in the institute’s Molecular Immunology division, with funding from the National Health and Medical Research Council of Australia (NHMRC).

The research was supported by Institut Curie, CNRS and INSERM. Dr Allan was funded by an INSERM-NHMRC exchange fellowship.

View the journal paper at Nature (subscription required).

Download the media release (pdf)

For further information

Liz Williams
Media and Publications Manager
Ph: +61 3 9345 2928
Mob: +61 405 279 095
Email: williams@wehi.edu.au

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au
http://www.wehi.edu.au/site/latest_news/rewiring_dna_circuitry_could_help_treat_asthma

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>