Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversal cells may tip the balance between bone formation and resorption in health and disease

06.06.2013
Investigators report on a possible 'missing link' in The American Journal of Pathology

By analyzing biopsy specimens from patients with postmenopausal osteoporosis and primary hyperparathyroidism, investigators have begun to pay increasing attention to "reversal cells," which prepare for bone formation during bone remodeling.

The hope is that these reversal cells will become critical therapeutic targets that may someday prevent osteoporosis and other bone disorders. This study is published in the July 2013 issue of The American Journal of Pathology.

In adults, bones are maintained healthy by a constant remodeling of the bone matrix. This bone remodeling consists of bone resorption by osteoclasts and bone formation by osteoblasts. A failure in the delicate balance between these two processes leads to pathologies such as osteoporosis. How these two processes are coupled together is poorly understood.

"Reversal cells may represent the missing link necessary to understand coupling between bone resorption and formation and to prevent osteoporosis," says Jean-Marie Delaisse, PhD, professor of clinical cell biology at the Institute of Regional Health Services Research at the University of Southern Denmark and Vejle-Lillebaelt Hospital in Vejle.

Reversal cells actually cover more than 80% of the resorbed bone surfaces. Using histomorphometry and immunohistochemistry on human bone biopsies, researchers found that the reversal cells colonizing the resorbed bone surfaces are immature osteoblastic cells which gradually mature into bone forming osteoblasts during the reversal phase, and prepare the bone surface for bone formation.

Researchers also found that some reversal cells display characteristics that suggest an "arrested" physiological status. These arrested reversal cells showed no physical connection with bone forming surfaces, a reduced cellular density, and a reduced expression of osteoblastic markers.

Biopsies from postmenopausal patients with osteoporosis showed a high proportion of arrested cells, but no such cells were found in biopsies from patients with primary hyperparathyroidism, in which the transition between bone resorption and formation is known to occur optimally. Negative correlations were found between the proportion of arrested cells in biopsies from patients with osteoporosis and trabecular bone volume or bone formation parameters.

In other words, larger arrested cell surfaces were associated with bone loss. Other findings suggest that the reversal phase is longer in those with postmenopausal osteoporosis compared to those with primary hyperparathyroidism.

Investigators describe three concurrent types of bone remodeling cycles. Their respective prevalence depends on the pathophysiological situation.

All bone remodeling processes start with bone resorption, but differ by the degree of restitution of the bone matrix. In coupled and balanced bone remodeling, the bone matrix is completely restituted as primarily observed in healthy and primary hyperparathyroidism bone. In coupled and unbalanced bone remodeling, bone formation occurs, but the resorbed cavity is not completely restituted. In uncoupled bone remodeling, the resorbed cavity remains completely unfilled, as an arrest of the reversal phase, with no new bone formation. Coupled and unbalanced bone remodeling and uncoupled bone remodeling both appear to contribute to bone loss in osteoporosis.

"Our observations suggest that arrested reversal cells reflect aborted remodeling cycles which did not progress to the bone formation step," says Dr. Delaisse. "We therefore propose that bone loss in postmenopausal osteoporosis does not only result from a failure of bone formation as commonly believed, leading to incomplete filling of resorption cavities, but also from a failure at the reversal phase, uncoupling bone formation from resorption."

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>