Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Retina transplantation improved by manipulating recipient retinal microenvironment

A research team in the United Kingdom has found that insulin-like growth factor (IGF1) impacts cell transplantation of photoreceptor precursors by manipulating the retinal recipient microenvironment, enabling better migration and integration of the cells into the adult mouse retina.
Their study is published in the current issue of Cell Transplantation (21:5), now freely available on-line at

"Photoreceptor death is an irreversible process and represents one of the largest causes of untreatable blindness in the developed world," said Dr. Rachael A. Pearson, study co-author and a member of the Department of Genetics, University College London Institute of Ophthalmology. "Stem cell replacement therapy offers a novel strategy for retinal repair, but since it is likely that a large number of cells would be needed to restore vision, enhancement of the process is needed."

In this study, the researchers used adeno-associated viral vectors (AAVs) to introduce three growth factors previously reported to play a role in photoreceptor development - IGF1, fibroblast growth factor (FGF2) and ciliary neurotrophic factor (CNTF) - into the retinas of adult mice. At three weeks post-transplantation, the number of integrated, differentiated photoreceptor cells present in the growth factor-treated retinas was compared to the untreated controls.

The researchers noted that all three growth factors are present during retinal development and all have been shown to affect photoreceptor differentiation. FGF2 has been shown to have varying effects based on the development stage of the cells to which it is applied. In addition, recent studies have shown that CNTF "acts transiently to suppress photoreceptor differentiation."

"AAV mediated expression of IGF1 led to significantly increased levels of cell integration," wrote the researchers. "However, over expression of FGF2 had no significant effect on cell numbers and CNTF led to a significant decrease in cell integration."

They concluded that it was possible to manipulate the environment of the recipient retina for photoreceptor cell transplantation using viral vectors, and that IGF1 provided a greater response.

"A potential consequence of IGF1 upregulation might be the improved or strengthened synaptic connectivity of the transplanted cells," said Dr. Pearson. "Newly born neurons, including photoreceptors, are vulnerable to pruning and apoptosis if appropriate synaptic connections with downstream targets are not formed and maintained."

The researchers noted that IGF1 has also been associated with the upregulation of brain-derived neurotrophic factor (BDNF), an important modulator of synaptic plasticity in the adult brain after injury and along with exercise-induced cognitive function.

"This important study demonstrates that, by modifying the environment, growth factors impact cell transplantation survival," said Dr. John Sladek, professor of neurology and pediatrics at the University of Colorado School of Medicine. "While this study focused on the retina, growth factors also are believed to alter cell transplantation and survival in other brain regions which means that these findings should lead to more research on other serious neurological disorders."

Contact: Dr. Rachael A. Pearson, Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath St., London, EC1V 9EL, UK.
Tel. +44-0-20 7608 6902
Fax. +44-0- 20 7608 6903
Citation: West, E. L.; Pearson, R. A.; Duran, Y.; Gonzalez-Cordero, A.; Maclaren, R. E.; Smith, A. J.; Sowden, J. C.; Ali, R. R. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant. 21(5):871-887; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at or Shinn-Zong Lin, MD, PhD at or David Eve, PhD at

David Eve | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>