Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retina transplantation improved by manipulating recipient retinal microenvironment

12.07.2012
A research team in the United Kingdom has found that insulin-like growth factor (IGF1) impacts cell transplantation of photoreceptor precursors by manipulating the retinal recipient microenvironment, enabling better migration and integration of the cells into the adult mouse retina.
Their study is published in the current issue of Cell Transplantation (21:5), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Photoreceptor death is an irreversible process and represents one of the largest causes of untreatable blindness in the developed world," said Dr. Rachael A. Pearson, study co-author and a member of the Department of Genetics, University College London Institute of Ophthalmology. "Stem cell replacement therapy offers a novel strategy for retinal repair, but since it is likely that a large number of cells would be needed to restore vision, enhancement of the process is needed."

In this study, the researchers used adeno-associated viral vectors (AAVs) to introduce three growth factors previously reported to play a role in photoreceptor development - IGF1, fibroblast growth factor (FGF2) and ciliary neurotrophic factor (CNTF) - into the retinas of adult mice. At three weeks post-transplantation, the number of integrated, differentiated photoreceptor cells present in the growth factor-treated retinas was compared to the untreated controls.

The researchers noted that all three growth factors are present during retinal development and all have been shown to affect photoreceptor differentiation. FGF2 has been shown to have varying effects based on the development stage of the cells to which it is applied. In addition, recent studies have shown that CNTF "acts transiently to suppress photoreceptor differentiation."

"AAV mediated expression of IGF1 led to significantly increased levels of cell integration," wrote the researchers. "However, over expression of FGF2 had no significant effect on cell numbers and CNTF led to a significant decrease in cell integration."

They concluded that it was possible to manipulate the environment of the recipient retina for photoreceptor cell transplantation using viral vectors, and that IGF1 provided a greater response.

"A potential consequence of IGF1 upregulation might be the improved or strengthened synaptic connectivity of the transplanted cells," said Dr. Pearson. "Newly born neurons, including photoreceptors, are vulnerable to pruning and apoptosis if appropriate synaptic connections with downstream targets are not formed and maintained."

The researchers noted that IGF1 has also been associated with the upregulation of brain-derived neurotrophic factor (BDNF), an important modulator of synaptic plasticity in the adult brain after injury and along with exercise-induced cognitive function.

"This important study demonstrates that, by modifying the environment, growth factors impact cell transplantation survival," said Dr. John Sladek, professor of neurology and pediatrics at the University of Colorado School of Medicine. "While this study focused on the retina, growth factors also are believed to alter cell transplantation and survival in other brain regions which means that these findings should lead to more research on other serious neurological disorders."

Contact: Dr. Rachael A. Pearson, Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath St., London, EC1V 9EL, UK.
Tel. +44-0-20 7608 6902
Fax. +44-0- 20 7608 6903
Email: rachaelpearson@ucl.ac.uk
Citation: West, E. L.; Pearson, R. A.; Duran, Y.; Gonzalez-Cordero, A.; Maclaren, R. E.; Smith, A. J.; Sowden, J. C.; Ali, R. R. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant. 21(5):871-887; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>