Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retina transplantation improved by manipulating recipient retinal microenvironment

12.07.2012
A research team in the United Kingdom has found that insulin-like growth factor (IGF1) impacts cell transplantation of photoreceptor precursors by manipulating the retinal recipient microenvironment, enabling better migration and integration of the cells into the adult mouse retina.
Their study is published in the current issue of Cell Transplantation (21:5), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Photoreceptor death is an irreversible process and represents one of the largest causes of untreatable blindness in the developed world," said Dr. Rachael A. Pearson, study co-author and a member of the Department of Genetics, University College London Institute of Ophthalmology. "Stem cell replacement therapy offers a novel strategy for retinal repair, but since it is likely that a large number of cells would be needed to restore vision, enhancement of the process is needed."

In this study, the researchers used adeno-associated viral vectors (AAVs) to introduce three growth factors previously reported to play a role in photoreceptor development - IGF1, fibroblast growth factor (FGF2) and ciliary neurotrophic factor (CNTF) - into the retinas of adult mice. At three weeks post-transplantation, the number of integrated, differentiated photoreceptor cells present in the growth factor-treated retinas was compared to the untreated controls.

The researchers noted that all three growth factors are present during retinal development and all have been shown to affect photoreceptor differentiation. FGF2 has been shown to have varying effects based on the development stage of the cells to which it is applied. In addition, recent studies have shown that CNTF "acts transiently to suppress photoreceptor differentiation."

"AAV mediated expression of IGF1 led to significantly increased levels of cell integration," wrote the researchers. "However, over expression of FGF2 had no significant effect on cell numbers and CNTF led to a significant decrease in cell integration."

They concluded that it was possible to manipulate the environment of the recipient retina for photoreceptor cell transplantation using viral vectors, and that IGF1 provided a greater response.

"A potential consequence of IGF1 upregulation might be the improved or strengthened synaptic connectivity of the transplanted cells," said Dr. Pearson. "Newly born neurons, including photoreceptors, are vulnerable to pruning and apoptosis if appropriate synaptic connections with downstream targets are not formed and maintained."

The researchers noted that IGF1 has also been associated with the upregulation of brain-derived neurotrophic factor (BDNF), an important modulator of synaptic plasticity in the adult brain after injury and along with exercise-induced cognitive function.

"This important study demonstrates that, by modifying the environment, growth factors impact cell transplantation survival," said Dr. John Sladek, professor of neurology and pediatrics at the University of Colorado School of Medicine. "While this study focused on the retina, growth factors also are believed to alter cell transplantation and survival in other brain regions which means that these findings should lead to more research on other serious neurological disorders."

Contact: Dr. Rachael A. Pearson, Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath St., London, EC1V 9EL, UK.
Tel. +44-0-20 7608 6902
Fax. +44-0- 20 7608 6903
Email: rachaelpearson@ucl.ac.uk
Citation: West, E. L.; Pearson, R. A.; Duran, Y.; Gonzalez-Cordero, A.; Maclaren, R. E.; Smith, A. J.; Sowden, J. C.; Ali, R. R. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant. 21(5):871-887; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>