Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resolved to quit smoking?

01.02.2011
Brain scans predict likely success

Brain scans showing neural reactions to pro-health messages can predict if you'll keep that resolution to quit smoking more accurately than you yourself can. That's according to a new study forthcoming in Health Psychology, a peer-reviewed journal.

"We targeted smokers who were already taking action to quit," says Emily Falk, the lead author of the study and director of the Communication Neuroscience Laboratory at the U-M Institute for Social Research (ISR) and Department of Communication Studies. "And we found that neural activity can predict behavior change, above and beyond people's own assessment of how likely they are to succeed.

"These results bring us one step closer to the ability to use functional magnetic resonance imaging (fMRI) to select the messages that are most likely to affect behavior change both at the individual and population levels. It seems that our brain activity may provide information that introspection does not."

For the study, funded by the National Institutes of Health and the National Science Foundation, Falk and colleagues Matthew Lieberman, Elliot Berkman, and Danielle Whalen tested 28 heavy smokers, recruited from an anti-smoking program. Each person completed a questionnaire on their smoking history, degree of nicotine dependence, cravings, and intentions to quit. Each was also tested for exhaled carbon monoxide (CO), a measure of recent smoking.

While participants were in an fMRI scanner, the researchers showed a series of television ads designed to help people quit smoking. The ads were produced by a variety of public health agencies and foundations including the California Department of Public Health and the American Legacy Foundation. After seeing each ad, participants rated how it affected their intention to quit, whether it increased their confidence about quitting, and how much they related to the message. A month after the scan, researchers contacted participants to see how they were doing and to obtain biological verification of how much they were smoking, by assessing their CO levels. Participants reported smoking an average of 5 cigarettes a day, compared with an average of 21 a day at the start of the study, and CO levels were consistent with these self-reports. But there was considerably variability in how successful participants were in achieving the goal.

The researchers compared the smokers' behavior change from the start to the end of the study with neural activity in a particular brain region that the team's previous research had suggested is predictive of behavior change – the medial prefrontal cortex. Neural activity in this region of the brain was significantly linked to reductions in smoking behavior over the month following the scan, predicting how successful people would be in reducing their smoking. "What is exciting," Falk explained, "is that by knowing what is going on in someone's brain during the ads, we can do twice as well at predicting their future behavior, compared to if we only knew their self-reported estimate of how successful they would be, or their intention to quit."

Interestingly, many of the ads that did not seem immediately relevant to participants at the time of the scan emerged as the most highly recalled during the month that people tried to quit smoking. "It is possible that the brain activity we are observing predicts behavior change that is not predicted by people's self-reports, because it is tapping into something that people aren't consciously aware of when they initially see the ads," said Falk.

Falk is also affiliated with the U-M Department of Psychology. Co-authors include Matthew Lieberman, Department of Psychology at the University of California, Los Angeles, Elliot Berkman, Department of Psychology at the University of Oregon, and Danielle Whalen, Department of Psychology at the University of California, Los Angeles, where the study was conducted as part of Falk's and Berkman's doctoral dissertations, advised by Matthew Lieberman.

Related URLS:

The U-M Institute for Social Research
www.isr.umich.edu
The U-M Communication Neuroscience Laboratory
http://cn.isr.umich.edu/
Established in 1949, the University of Michigan Institute for Social Research (ISR) is the world's largest academic social science survey and research organization, and a world leader in developing and applying social science methodology, and in educating researchers and students from around the world. ISR conducts some of the most widely-cited studies in the nation, including the Thomson Reuters/University of Michigan Surveys of Consumers, the American National Election Studies, the Monitoring the Future Study, the Panel Study of Income Dynamics, the Health and Retirement Study, the Columbia County Longitudinal Study and the National Survey of Black Americans. ISR researchers also collaborate with social scientists in more than 60 nations on the World Values Surveys and other projects, and the Institute has established formal ties with universities in Poland, China, and South Africa. ISR is also home to the Inter-University Consortium for Political and Social Research (ICPSR), the world's largest digital social science data archive. Visit the ISR Web site at http://www.isr.umich.edu for more information.

Diane Swanbrow | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>