Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Resisting the flu

New avenues for influenza control suggested by identification of an enzyme that plays a crucial role in resistance to the infection

McGill researchers, led by Dr. Maya Saleh of the Department of Medicine, have identified an enzyme, cIAP2 that helps the lungs protect themselves from the flu by giving them the ability to resist tissue damage.

Lung tissue from cIAP2-deficient mice showing effects on epithelial cells of influenza infection

Image credit: Claudia Champagne, McGill University

“It’s a discovery that offers exciting new avenues for controlling influenza, since until now attempts to target the virus itself have proven challenging, especially in the face of emerging new strains of the virus,” says Saleh, who is also a researcher at the Research Institute of the McGill University Health Centre (RI-MUHC). “The results from our study now suggest that one effective way of countering influenza infections may instead be offered by enhancing the body’s resistance to the virus.”

Like many other battles, fighting the flu is a combination of both control and defence.

On the one hand, on the control end of the process, our immune system comes into play to prevent the virus from replicating inside our cells, and attacking with increasing strength. At the same time, on the defensive side, our bodies need to actively resist the destruction and harmful cell death that is caused by the virus.

By investigating the role played by cIAP2 in mice with the H1N1 influenza A virus, what Saleh and her team discovered was that the enzyme is necessary to control the nature of cell death during influenza infection. They found that cIAP2, which functions by modifying and activating survival factors in the cell, steers the body away from an inflammatory and auto-destructive process known as necrotic death. The enzyme is, in effect, a gatekeeper of cell death.

In its absence, the same factors that depend on cIAP2 to keep the cell alive, reveal a destructive side and induce a harmful form of cell death. cIAP2 therefore not only protects the infected cells from dying in such a manner, but also protects uninfected neighbouring cells in the same tissue. By doing so, this enzyme increases the resistance of the lung to influenza infection and associated pathology.

The researchers believe that the identification of this pathway of resistance to flu opens a number of avenues for future drug development. Ian Rodrigue-Gervais is a post-doctoral fellow in Prof. Saleh’s lab and one of the authors on the paper. According to him, what is truly exciting about this discovery is that it suggests that it may be possible to suppress features of flu-inflicted tissue injury. “What we saw in this study is that if the enzyme cIAP2 is present, the host can better tolerate the infection and then reduce the illness.”

This research was funded by the Canadian Institutes for Health Research the Burroughs Wellcome Fund, the Fonds de recherche en santé du Québec (FRSQ), the Canadian Association of Gastroenterology (CAG)/Abbott, the Strauss Foundation, the Kidney Cancer Association and the National Institutes of Health.

To read the full article, ‘Cellular inhibitor of apoptosis protein cIAP2 regulates pulmonary tissue necrosis and host survival to influenza A virus infection’ by Rodrigue-Gervais et al in Cell Host & Microbe:

Researcher contacts for French and English interviews
Team leader:
Post-doctoral researcher:
Contact Information
Contact: Katherine Gombay
Organization: Media Relations Office
Office Phone: 514-398-2189

Katherine Gombay | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>