Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resisting the flu

16.01.2014
New avenues for influenza control suggested by identification of an enzyme that plays a crucial role in resistance to the infection

McGill researchers, led by Dr. Maya Saleh of the Department of Medicine, have identified an enzyme, cIAP2 that helps the lungs protect themselves from the flu by giving them the ability to resist tissue damage.


Lung tissue from cIAP2-deficient mice showing effects on epithelial cells of influenza infection

Image credit: Claudia Champagne, McGill University

“It’s a discovery that offers exciting new avenues for controlling influenza, since until now attempts to target the virus itself have proven challenging, especially in the face of emerging new strains of the virus,” says Saleh, who is also a researcher at the Research Institute of the McGill University Health Centre (RI-MUHC). “The results from our study now suggest that one effective way of countering influenza infections may instead be offered by enhancing the body’s resistance to the virus.”

Like many other battles, fighting the flu is a combination of both control and defence.

On the one hand, on the control end of the process, our immune system comes into play to prevent the virus from replicating inside our cells, and attacking with increasing strength. At the same time, on the defensive side, our bodies need to actively resist the destruction and harmful cell death that is caused by the virus.

By investigating the role played by cIAP2 in mice with the H1N1 influenza A virus, what Saleh and her team discovered was that the enzyme is necessary to control the nature of cell death during influenza infection. They found that cIAP2, which functions by modifying and activating survival factors in the cell, steers the body away from an inflammatory and auto-destructive process known as necrotic death. The enzyme is, in effect, a gatekeeper of cell death.

In its absence, the same factors that depend on cIAP2 to keep the cell alive, reveal a destructive side and induce a harmful form of cell death. cIAP2 therefore not only protects the infected cells from dying in such a manner, but also protects uninfected neighbouring cells in the same tissue. By doing so, this enzyme increases the resistance of the lung to influenza infection and associated pathology.

The researchers believe that the identification of this pathway of resistance to flu opens a number of avenues for future drug development. Ian Rodrigue-Gervais is a post-doctoral fellow in Prof. Saleh’s lab and one of the authors on the paper. According to him, what is truly exciting about this discovery is that it suggests that it may be possible to suppress features of flu-inflicted tissue injury. “What we saw in this study is that if the enzyme cIAP2 is present, the host can better tolerate the infection and then reduce the illness.”

This research was funded by the Canadian Institutes for Health Research the Burroughs Wellcome Fund, the Fonds de recherche en santé du Québec (FRSQ), the Canadian Association of Gastroenterology (CAG)/Abbott, the Strauss Foundation, the Kidney Cancer Association and the National Institutes of Health.

To read the full article, ‘Cellular inhibitor of apoptosis protein cIAP2 regulates pulmonary tissue necrosis and host survival to influenza A virus infection’ by Rodrigue-Gervais et al in Cell Host & Microbe: http://www.cell.com/cell-host-microbe/home


Researcher contacts for French and English interviews
Team leader: maya.saleh@mcgill.ca
Post-doctoral researcher: ian.rodrigue-gervais@mail.mcgill.ca
http://www.mcgill.ca/newsroom/
http://twitter.com/McGillU
Contact Information
Contact: Katherine Gombay
Organization: Media Relations Office
Email: katherine.gombay@mcgill.ca
Office Phone: 514-398-2189

Katherine Gombay | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>