Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistance to key malaria drug spreading at alarming rate in Southeast Asia

31.07.2014

Longer treatment courses with combination therapies prove effective in areas with drug resistance

WHAT:

Resistance to artemisinin, the main drug to treat malaria, is now widespread throughout Southeast Asia, among the Plasmodium falciparum (P. falciparum) parasites that cause the disease and is likely caused by a genetic mutation in the parasites.

However, a six-day course of artemisinin-based combination therapy—as opposed to a standard three-day course—has proved highly effective in treating drug-resistant malaria cases, according to findings published today in the New England Journal of Medicine. The research was conducted by an international team of scientists including those from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Previous clinical and laboratory studies suggest that P. falciparum parasites with a mutant version of a gene called K13-propeller are resistant to artemisinin. In the new study, researchers found that the geographic distribution of these mutant parasites in Western Cambodia corresponded with the recent spread of drug resistance among malaria patients in that region.

Although artemisinin continued to effectively clear malaria infections among patients in this region, the parasites with the genetic mutation were eliminated more slowly, according to the authors. Slow-clearing infections strongly associated with this genetic mutation were found in additional areas, validating this marker of resistance outside of Cambodia. Artemisinin resistance is now firmly established in areas of Cambodia, Myanmar, Thailand and Vietnam, according to the authors.

As a potential treatment, the researchers tested a six-day course of artemisinin-based combination therapy in Western Cambodia and found the regimen to be effective in this region, where resistance has become the most problematic. To contain the further spread of artemisinin resistance, continued geographical monitoring is needed as well as a re-examination of standard malaria treatment regimens and the development of new therapy options, the authors write.

###

ARTICLE:

EA Ashley et al. The spread of artemisinin resistance in falciparum malaria. New England Journal of Medicine DOI: 10.1056/NEJMoa1314981.

WHO:

NIAID Director Anthony S. Fauci, M.D., is available to comment on this research. Rick M. Fairhurst, M.D., Ph.D., chief of the Malaria Pathogenesis and Human Immunity Unit in NIAID's Laboratory of Malaria and Vector Research, is a co-author on the paper and is also available for comment.

CONTACT:

To schedule interviews, please contact Jennifer Routh, (301) 402-1663, jennifer.routh@nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH):

NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Jennifer Routh | Eurek Alert!

Further reports about: Allergy Human Infectious Medicine NIAID NIH falciparum infections malaria parasites

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>