Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Uncover Molecular Basis of Infection of Tick-Transmitted Disease

Virginia Commonwealth University School of Medicine researchers have identified the “keys” and “doors” of a bacterium responsible for a series of tick-transmitted diseases.

These findings may point researchers toward the development of a single vaccine that protects against members of an entire family of bacteria that cause disease in humans, domestic animals and livestock.

Survival for many bacteria is dependent on their ability to invade human or animal cells. And it needs to be done in a very precise fashion. Bacteria use a specific set of “keys” on their surfaces to unlock specific “doors,” or entryways into their host cells.

By understanding how these bacteria invade cells, researchers are able to identify potential targets to block the spread of infection, and from there, develop safe and effective vaccines.

In the study, now published online and appearing in the November (Volume 80, Issue 11) issue of the journal Infection and Immunity, a journal of the American Society for Microbiology, researchers reported that a protein called OmpA on the surface of Anaplasma phagocytophilum is important for invading host cells. Anaplasma phagocytophilum is an Anaplasmataceae bacterium that infects humans to cause granulocytic anaplasmosis. It is the second most common tick-transmitted disease after Lyme disease in the United States, and it also is found in Europe and Asia.

The team also identified the particular sugar residue on the surfaces of host cells to which OmpA binds.

“In other words, we identified both a key and door that together promote Anaplasma phagocytophilum infection,” said lead investigator Jason A. Carlyon, Ph.D., associate professor and a George and Lavinia Blick Scholar in the Department of Microbiology and Immunology in the VCU School of Medicine.

“These findings are important because our data also establish a direction for development of a single vaccine that protects against members of an entire family of bacteria that cause disease in humans, domestic animals and livestock,” he said.

According to Carlyon, the region of OmpA that mediates infection is shared among other Anaplasmataceae bacteria.

Experts have seen a steady rise in the incidence of human infections caused by tick-transmitted bacterial pathogens in the past several years. Many tick-transmitted bacterial pathogens are considered “emerging pathogens” because it was only recently discovered that they infect humans. Moreover, evidence suggests that many of these infections go unrecognized, signifying that the prevalence of human diseases caused by Anaplasmataceae pathogens is even higher, said Carlyon. Livestock infections carry a significant economic burden, costing the U.S. cattle industry $100 million per year, he added.

Researchers in Carlyon’s lab are presently refining their understanding of how OmpA promotes infection and testing its efficacy in protecting against infection by A. phagocytophilum and other Anaplasmataceae members.

The findings of the VCU-led study were also highlighted in a commentary that appeared in the same issue of the journal, authored by two experts in the field, including Guy H. Palmer, DVM, Ph.D., director, Creighton chair and Regents professor in the Paul G. Allen School for Global Animal Health at the Washington State University College of Veterinary Medicine, and Susan M. Noh, Ph.D., also with Washington State University College of Veterinary Medicine.

For this work, VCU has filed a patent. At this time, U.S. and foreign rights are available, and the team is seeking commercial partners to further develop this technology.

Carlyon collaborated with VCU School of Medicine researchers Nore Ojogun, Ph.D.; Amandeep Kahlon, Ph.D.; Matthew J. Troese, Ph.D.; and Rachael J. Thomas, Ph.D., all former postdoctoral fellows in the VCU Department of Microbiology and Immunology and Carlyon’s lab; Stephanie A. Ragland, former laboratory technician in the VCU Department of Microbiology and Immunology; Lauren VieBrock, graduate student in the VCU Department of Microbiology and Immunology, both also in Carlyon’s lab; Juliana E. Masttronunzio, Ph.D., postdoctoral fellow in the Yale University School of Medicine, and Erol Fikrig, M.D., Waldemar Von Zedtwitz professor of medicine and epidemiology and microbial pathogenesis in the Yale University School of Medicine, and investigator with Howard Hughes Medical Institute, and section chief of infectious diseases; and Naomi J. Walker, technician with the University of California School of Veterinary Medicine, and Dori L. Borjesson, Ph.D., professor from the University of California School of Veterinary Medicine.

This study was supported by a grant from the National Institutes of Health grants R01 AI072683, R01AI072683-04S1, and R21 AI090170 (to Carlyon) and R01 AI141440 (to Fikrig). The VCU Flow Cytometry and Imaging Shared Resource Facility is supported, in part, by funding from NIH-NCI Cancer Center Support Grant 5 P30 CA016059.

Read the abstract here:

EDITOR’S NOTE: A copy of the study is available for reporters by contacting the journal’s communications office at 202.737.3600 or

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht University of California Scientists Create Malaria-Blocking Mosquitoes
30.11.2015 | University of California, Irvine

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>