Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UH work to prevent neurological diseases

25.06.2010
Jan-Åke Gustafsson investigates 'wireless connections' in the brain

Many diseases of brain function, such as epilepsy and schizophrenia, are caused by problems in how neurons communicate with each other. A University of Houston (UH) researcher and his team are analyzing these commands and connections in an attempt to prevent those diseases.

Dr. Jan-Åke Gustafsson, Robert A. Welch Professor in UH's biology and biochemistry department, describes his team's findings in a paper titled "Liver X receptor β and thyroid hormone receptor α in brain cortical layering," appearing in the current online issue of the journal Proceedings of the National Academy of Sciences, one of the world's most-cited multidisciplinary scientific serials.

"The brain works like a computer," said Gustafsson, who also is director of the Center for Nuclear Receptors and Cell Signaling at UH. "We know something about the hard wire, but so far we know nothing about 'wireless connections.' Our work is about how and when the components of the 'computer' are assembled and how the connections between the components are made."

The brain is composed of brain cells, called neurons, which are placed in the correct position in the brain during fetal and infant development. The neurons move with military precision to their correct places just like soldiers in a military parade, except the ranks are referred to as layers. If any of the neurons fail to make the correct move then there will be gaps in the formation of the cortex, which is the outer brain layer. Any distractions that slow down or speed up the neurons will cause a problem with the formation of the cortex. Normally, the neurons obey several commands that come from the environment, hormones and other nearby neurons.

"Like a computer, such connections determine how fast we think and how good our memories are, but also whether we will develop diseases like epilepsy or schizophrenia," he said. "Since the commands to the neurons come from hormones and environmental pollutants, it is essential that we understand how the commands are given and received if we are going to prevent those diseases, which appear to be due to the incorrect positioning of neurons."

Liver X and thyroid hormone receptors, which were studied for this paper, have been found to be essential to the developing cortex in mouse embryos and thereby sometimes regulate the same genes. The first part of the paper explains the importance of the liver X receptor, or LXR, which has been shown to be an important factor in brain development and, very likely, in neurological diseases. LXR plays key roles in cholesterol regulation and the central nervous system, regulating brain cholesterol levels, as well as in maintenance of motor neurons in the spinal cord. Gustafsson said the LXR belongs to a gene family called nuclear receptors that is akin to a "military division." If the LXR "commander" is taken away, the neurons under its command do not move. The second part of the paper says another "commander," called a thyroid hormone receptor, can later wake up the neurons that have stopped on the way and make them move again so that the formation of the cortex is restored.

The research team analyzed the architecture of the cerebral cortex in embryonic and neonatal mice, removing different receptors through genetic manipulation. When they want to find out the function of a gene, they use knockout technology to inactivate it, or knock it out. The process involves inserting a mistake into the gene. Since the genes in mice have similar functions in humans, the researchers can obtain information about what causes human diseases.

In addition to Gustafsson, the UH team consists of post-doc students Dr. Xin-jie Tan, Dr. Hyun-jin Kim, graduate student Ryan Butler and professor Margaret Warner. Additional collaborators include scientists from the Third Military Medical University in China, Methodist Hospital Research Institute in Houston and the Center for Biosciences at the Karolinska Institute in Sweden.

About the University of Houston

The University of Houston is a comprehensive national research institution serving the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. UH serves 37,000 students in the nation's fourth-largest city in the most ethnically and culturally diverse region in the country.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 181 ranked faculty and approximately 4,500 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, visit http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://tinyurl.com/6qw9ht and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>