Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers turn computers into powerful allies in the fight against AIDS

08.10.2014

The battle against AIDS cannot be won in the laboratory alone. To fight the potentially deadly virus that 34 million people are suffering from we need help from computers. Now research fron University of Southern Denmark turns computers into powerful allies in the battle.

Effective treatment of HIV-virus is a race against time: Many of the drugs that have been potent killers of HIV-virus, have today lost their power, because the virus has become resistant to them. As a result science must constantly develop new drugs that can attack the virus in new ways.

Now researchers from the University of Southern Denmark present a method to speed up the important development work up with an order of several hundred percent.

It now takes not years, but months or even only weeks to find new compounds that have the potential to become a new HIV drug. Finding suitable compounds that can specifically inhibit the HIV virus, is crucial in AIDS research, explains postdoc Vasantanathan Poongavanam from Department of Physics, Chemistry and Pharmacy, University of Southern Denmark:

... more about:
»HIV »HIV virus »HIV-1 »RNase »Researchers »ability »drugs »enzymes

"HIV is a retrovirus that contains enzymes which make it able to copy itself with the help of host genetic material and thus reproduce. If you can block these enzymes’ ability to replicate itself, the virus cannot reproduce."

The needle in the haystack
An almost infinite number of different substances can be synthetized in a laboratory. Some of them may prove to inhibit HIV-virus’s reproduction, but finding them is like finding a needle in a haystack.

"It takes enormous amounts of time and resources, to go through millions and millions of compounds.  With the techniques used today, it may take years to carry out a screening of possible compounds”.

In addition, it takes time to turn an effective compound into a safe pharmaceutical agent that can get on the market.

"Today, it generally takes nearly 14 years from the time you find a drug candidate to get it on the market. Anything that can shorten that time is an important improvement”, says Vasanthanathan Poongavanam.

Until now, researchers have been hampered by slow computers and inaccurate prediction models when they ask computers to identify compounds that may be effective against HIV. Now the SDU researchers have managed to develop an effective model at a time when significantly more powerful computers have become available.

“Our work shows that computer based predictions are a extremely fast, accurate and promising methodology in the drug discovery projects”, says Vasanthanathan Poongavanam.

14 new compounds found
With the new methods based on quantum mechanics and molecular mechanics, Vasanthanathan Poongavanam and his colleague, Jacob Kongsted, screened half a million compounds and found 25 that were interesting to investigate further. These 25 were tested in a conventional laboratory experiment, and 14 of them were found to inhibit HIV virus's ability to reproduce.

"It took us only a few weeks to find these 14 very interesting compounds, whereas before it would have taken years", explains Vasanthanathan Poongavanam.

The 14 compounds have now been taken over by Italian researchers who continue working with them at the University of Cagliari. The next step is to carry out advanced experiments on these compounds. If they are positive, the compounds may go on the market as a drug against HIV.

Illustration HIV virus (big purple balls) are entering a host cell. Once they have entered, they deliver their cargo of viral RNA (purple capsule looking container). The container also carries enzymes needed for the virus to copy itself, and the goal is to inhibit these enzymes so that the virus no longer can copy itself. 

The description of the new method are published in the journals Integrative Biology and Plos One

Ref: Binding free energy based structural dynamics analysis of HIV-1 RT RNase H-inhibitor complexes. Vasanthanathan Poongavanam, Jógvan Haugaard Magnus Olsen, Jacob Kongsted. DOI: 10.1039 / C4IB00111G.

Inhibitor Ranking Through QM based Chelation Calculations for Virtual Screening of HIV-1 RNase H inhibition, Vasanthanathan Poongavanam, Casper Steinmann, Jacob Kongsted, PLoS ONE 9(6): e98659. doi:10.1371/journal.pone.0098659

Contact Postdoc Vasanthanathan Poongavanam, nathan@sdu.dk. Tel: +45 65502570. Mobile: +45 23377705.

Read also
Researchers discover why Listeria bacterium is so hard to fight
Scientists closing in on new obesity drug
Protein researchers closing in on the mystery of schizophrenia

Birgitte Svennevig | Eurek Alert!
Further information:
http://www.sdu.dk/en/Om_SDU/Fakulteterne/Naturvidenskab/Nyheder/2014_10_07_HIV_chemistry

Further reports about: HIV HIV virus HIV-1 RNase Researchers ability drugs enzymes

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>