Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers turn computers into powerful allies in the fight against AIDS

08.10.2014

The battle against AIDS cannot be won in the laboratory alone. To fight the potentially deadly virus that 34 million people are suffering from we need help from computers. Now research fron University of Southern Denmark turns computers into powerful allies in the battle.

Effective treatment of HIV-virus is a race against time: Many of the drugs that have been potent killers of HIV-virus, have today lost their power, because the virus has become resistant to them. As a result science must constantly develop new drugs that can attack the virus in new ways.

Now researchers from the University of Southern Denmark present a method to speed up the important development work up with an order of several hundred percent.

It now takes not years, but months or even only weeks to find new compounds that have the potential to become a new HIV drug. Finding suitable compounds that can specifically inhibit the HIV virus, is crucial in AIDS research, explains postdoc Vasantanathan Poongavanam from Department of Physics, Chemistry and Pharmacy, University of Southern Denmark:

... more about:
»HIV »HIV virus »HIV-1 »RNase »Researchers »ability »drugs »enzymes

"HIV is a retrovirus that contains enzymes which make it able to copy itself with the help of host genetic material and thus reproduce. If you can block these enzymes’ ability to replicate itself, the virus cannot reproduce."

The needle in the haystack
An almost infinite number of different substances can be synthetized in a laboratory. Some of them may prove to inhibit HIV-virus’s reproduction, but finding them is like finding a needle in a haystack.

"It takes enormous amounts of time and resources, to go through millions and millions of compounds.  With the techniques used today, it may take years to carry out a screening of possible compounds”.

In addition, it takes time to turn an effective compound into a safe pharmaceutical agent that can get on the market.

"Today, it generally takes nearly 14 years from the time you find a drug candidate to get it on the market. Anything that can shorten that time is an important improvement”, says Vasanthanathan Poongavanam.

Until now, researchers have been hampered by slow computers and inaccurate prediction models when they ask computers to identify compounds that may be effective against HIV. Now the SDU researchers have managed to develop an effective model at a time when significantly more powerful computers have become available.

“Our work shows that computer based predictions are a extremely fast, accurate and promising methodology in the drug discovery projects”, says Vasanthanathan Poongavanam.

14 new compounds found
With the new methods based on quantum mechanics and molecular mechanics, Vasanthanathan Poongavanam and his colleague, Jacob Kongsted, screened half a million compounds and found 25 that were interesting to investigate further. These 25 were tested in a conventional laboratory experiment, and 14 of them were found to inhibit HIV virus's ability to reproduce.

"It took us only a few weeks to find these 14 very interesting compounds, whereas before it would have taken years", explains Vasanthanathan Poongavanam.

The 14 compounds have now been taken over by Italian researchers who continue working with them at the University of Cagliari. The next step is to carry out advanced experiments on these compounds. If they are positive, the compounds may go on the market as a drug against HIV.

Illustration HIV virus (big purple balls) are entering a host cell. Once they have entered, they deliver their cargo of viral RNA (purple capsule looking container). The container also carries enzymes needed for the virus to copy itself, and the goal is to inhibit these enzymes so that the virus no longer can copy itself. 

The description of the new method are published in the journals Integrative Biology and Plos One

Ref: Binding free energy based structural dynamics analysis of HIV-1 RT RNase H-inhibitor complexes. Vasanthanathan Poongavanam, Jógvan Haugaard Magnus Olsen, Jacob Kongsted. DOI: 10.1039 / C4IB00111G.

Inhibitor Ranking Through QM based Chelation Calculations for Virtual Screening of HIV-1 RNase H inhibition, Vasanthanathan Poongavanam, Casper Steinmann, Jacob Kongsted, PLoS ONE 9(6): e98659. doi:10.1371/journal.pone.0098659

Contact Postdoc Vasanthanathan Poongavanam, nathan@sdu.dk. Tel: +45 65502570. Mobile: +45 23377705.

Read also
Researchers discover why Listeria bacterium is so hard to fight
Scientists closing in on new obesity drug
Protein researchers closing in on the mystery of schizophrenia

Birgitte Svennevig | Eurek Alert!
Further information:
http://www.sdu.dk/en/Om_SDU/Fakulteterne/Naturvidenskab/Nyheder/2014_10_07_HIV_chemistry

Further reports about: HIV HIV virus HIV-1 RNase Researchers ability drugs enzymes

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>